| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > struct2slots2dom | GIF version | ||
| Description: There are at least two elements in an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| structvtxvallem.s | ⊢ 𝑆 ∈ ℕ |
| structvtxvallem.b | ⊢ (Base‘ndx) < 𝑆 |
| structvtxvallem.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} |
| Ref | Expression |
|---|---|
| struct2slots2dom | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2o ≼ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basendxnn 12963 | . . . 4 ⊢ (Base‘ndx) ∈ ℕ | |
| 2 | 1 | elexi 2786 | . . 3 ⊢ (Base‘ndx) ∈ V |
| 3 | 2 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Base‘ndx) ∈ V) |
| 4 | structvtxvallem.s | . . 3 ⊢ 𝑆 ∈ ℕ | |
| 5 | 4 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑆 ∈ ℕ) |
| 6 | simpl 109 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 ∈ 𝑋) | |
| 7 | simpr 110 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐸 ∈ 𝑌) | |
| 8 | structvtxvallem.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} | |
| 9 | opexg 4280 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝑉 ∈ 𝑋) → 〈(Base‘ndx), 𝑉〉 ∈ V) | |
| 10 | 1, 6, 9 | sylancr 414 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈(Base‘ndx), 𝑉〉 ∈ V) |
| 11 | opexg 4280 | . . . . 5 ⊢ ((𝑆 ∈ ℕ ∧ 𝐸 ∈ 𝑌) → 〈𝑆, 𝐸〉 ∈ V) | |
| 12 | 4, 7, 11 | sylancr 414 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑆, 𝐸〉 ∈ V) |
| 13 | prexg 4263 | . . . 4 ⊢ ((〈(Base‘ndx), 𝑉〉 ∈ V ∧ 〈𝑆, 𝐸〉 ∈ V) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) |
| 15 | 8, 14 | eqeltrid 2293 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ∈ V) |
| 16 | 1 | nnrei 9065 | . . . 4 ⊢ (Base‘ndx) ∈ ℝ |
| 17 | structvtxvallem.b | . . . 4 ⊢ (Base‘ndx) < 𝑆 | |
| 18 | 16, 17 | ltneii 8189 | . . 3 ⊢ (Base‘ndx) ≠ 𝑆 |
| 19 | 18 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Base‘ndx) ≠ 𝑆) |
| 20 | 8 | eqimss2i 3254 | . . 3 ⊢ {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⊆ 𝐺 |
| 21 | 20 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⊆ 𝐺) |
| 22 | 3, 5, 6, 7, 15, 19, 21 | hashdmprop2dom 11011 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2o ≼ dom 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ⊆ wss 3170 {cpr 3639 〈cop 3641 class class class wbr 4051 dom cdm 4683 ‘cfv 5280 2oc2o 6509 ≼ cdom 6839 < clt 8127 ℕcn 9056 ndxcnx 12904 Basecbs 12907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-pre-ltirr 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-2o 6516 df-en 6841 df-dom 6842 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 |
| This theorem is referenced by: structvtxval 15713 structiedg0val 15714 |
| Copyright terms: Public domain | W3C validator |