| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > struct2slots2dom | GIF version | ||
| Description: There are at least two elements in an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| structvtxvallem.s | ⊢ 𝑆 ∈ ℕ |
| structvtxvallem.b | ⊢ (Base‘ndx) < 𝑆 |
| structvtxvallem.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} |
| Ref | Expression |
|---|---|
| struct2slots2dom | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2o ≼ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basendxnn 12830 | . . . 4 ⊢ (Base‘ndx) ∈ ℕ | |
| 2 | 1 | elexi 2783 | . . 3 ⊢ (Base‘ndx) ∈ V |
| 3 | 2 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Base‘ndx) ∈ V) |
| 4 | structvtxvallem.s | . . 3 ⊢ 𝑆 ∈ ℕ | |
| 5 | 4 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑆 ∈ ℕ) |
| 6 | simpl 109 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 ∈ 𝑋) | |
| 7 | simpr 110 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐸 ∈ 𝑌) | |
| 8 | structvtxvallem.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} | |
| 9 | opexg 4271 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝑉 ∈ 𝑋) → 〈(Base‘ndx), 𝑉〉 ∈ V) | |
| 10 | 1, 6, 9 | sylancr 414 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈(Base‘ndx), 𝑉〉 ∈ V) |
| 11 | opexg 4271 | . . . . 5 ⊢ ((𝑆 ∈ ℕ ∧ 𝐸 ∈ 𝑌) → 〈𝑆, 𝐸〉 ∈ V) | |
| 12 | 4, 7, 11 | sylancr 414 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑆, 𝐸〉 ∈ V) |
| 13 | prexg 4254 | . . . 4 ⊢ ((〈(Base‘ndx), 𝑉〉 ∈ V ∧ 〈𝑆, 𝐸〉 ∈ V) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) |
| 15 | 8, 14 | eqeltrid 2291 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ∈ V) |
| 16 | 1 | nnrei 9044 | . . . 4 ⊢ (Base‘ndx) ∈ ℝ |
| 17 | structvtxvallem.b | . . . 4 ⊢ (Base‘ndx) < 𝑆 | |
| 18 | 16, 17 | ltneii 8168 | . . 3 ⊢ (Base‘ndx) ≠ 𝑆 |
| 19 | 18 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Base‘ndx) ≠ 𝑆) |
| 20 | 8 | eqimss2i 3249 | . . 3 ⊢ {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⊆ 𝐺 |
| 21 | 20 | a1i 9 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⊆ 𝐺) |
| 22 | 3, 5, 6, 7, 15, 19, 21 | hashdmprop2dom 10987 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2o ≼ dom 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 Vcvv 2771 ⊆ wss 3165 {cpr 3633 〈cop 3635 class class class wbr 4043 dom cdm 4674 ‘cfv 5270 2oc2o 6495 ≼ cdom 6825 < clt 8106 ℕcn 9035 ndxcnx 12771 Basecbs 12774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-pre-ltirr 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-2o 6502 df-en 6827 df-dom 6828 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 |
| This theorem is referenced by: structvtxval 15578 structiedg0val 15579 |
| Copyright terms: Public domain | W3C validator |