ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ushgrun Unicode version

Theorem ushgrun 15853
Description: The union  U of two (undirected) simple hypergraphs  G and  H with the same vertex set 
V is a (not necessarily simple) hypergraph with the vertex set  V and the union  ( E  u.  F
) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
ushgrun.g  |-  ( ph  ->  G  e. USHGraph )
ushgrun.h  |-  ( ph  ->  H  e. USHGraph )
ushgrun.e  |-  E  =  (iEdg `  G )
ushgrun.f  |-  F  =  (iEdg `  H )
ushgrun.vg  |-  V  =  (Vtx `  G )
ushgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
ushgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
ushgrun.u  |-  ( ph  ->  U  e.  W )
ushgrun.v  |-  ( ph  ->  (Vtx `  U )  =  V )
ushgrun.un  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
Assertion
Ref Expression
ushgrun  |-  ( ph  ->  U  e. UHGraph )

Proof of Theorem ushgrun
StepHypRef Expression
1 ushgrun.g . . 3  |-  ( ph  ->  G  e. USHGraph )
2 ushgruhgr 15845 . . 3  |-  ( G  e. USHGraph  ->  G  e. UHGraph )
31, 2syl 14 . 2  |-  ( ph  ->  G  e. UHGraph )
4 ushgrun.h . . 3  |-  ( ph  ->  H  e. USHGraph )
5 ushgruhgr 15845 . . 3  |-  ( H  e. USHGraph  ->  H  e. UHGraph )
64, 5syl 14 . 2  |-  ( ph  ->  H  e. UHGraph )
7 ushgrun.e . 2  |-  E  =  (iEdg `  G )
8 ushgrun.f . 2  |-  F  =  (iEdg `  H )
9 ushgrun.vg . 2  |-  V  =  (Vtx `  G )
10 ushgrun.vh . 2  |-  ( ph  ->  (Vtx `  H )  =  V )
11 ushgrun.i . 2  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
12 ushgrun.u . 2  |-  ( ph  ->  U  e.  W )
13 ushgrun.v . 2  |-  ( ph  ->  (Vtx `  U )  =  V )
14 ushgrun.un . 2  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
153, 6, 7, 8, 9, 10, 11, 12, 13, 14uhgrun 15851 1  |-  ( ph  ->  U  e. UHGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375    e. wcel 2180    u. cun 3175    i^i cin 3176   (/)c0 3471   dom cdm 4696   ` cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832  USHGraphcushgr 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834  df-ushgrm 15835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator