ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuf GIF version

Theorem fodjuf 7273
Description: Lemma for fodjuomni 7277 and fodjumkv 7288. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjuf.o (𝜑𝑂𝑉)
Assertion
Ref Expression
fodjuf (𝜑𝑃 ∈ (2o𝑚 𝑂))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑃(𝑦,𝑧)   𝐹(𝑦)   𝑉(𝑦,𝑧)

Proof of Theorem fodjuf
StepHypRef Expression
1 0lt2o 6550 . . . . 5 ∅ ∈ 2o
21a1i 9 . . . 4 ((𝜑𝑦𝑂) → ∅ ∈ 2o)
3 1lt2o 6551 . . . . 5 1o ∈ 2o
43a1i 9 . . . 4 ((𝜑𝑦𝑂) → 1o ∈ 2o)
5 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
65fodjuomnilemdc 7272 . . . 4 ((𝜑𝑦𝑂) → DECID𝑧𝐴 (𝐹𝑦) = (inl‘𝑧))
72, 4, 6ifcldcd 3617 . . 3 ((𝜑𝑦𝑂) → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o)
8 fodjuf.p . . 3 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
97, 8fmptd 5757 . 2 (𝜑𝑃:𝑂⟶2o)
10 2onn 6630 . . . 4 2o ∈ ω
1110a1i 9 . . 3 (𝜑 → 2o ∈ ω)
12 fodjuf.o . . 3 (𝜑𝑂𝑉)
1311, 12elmapd 6772 . 2 (𝜑 → (𝑃 ∈ (2o𝑚 𝑂) ↔ 𝑃:𝑂⟶2o))
149, 13mpbird 167 1 (𝜑𝑃 ∈ (2o𝑚 𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wrex 2487  c0 3468  ifcif 3579  cmpt 4121  ωcom 4656  wf 5286  ontowfo 5288  cfv 5290  (class class class)co 5967  1oc1o 6518  2oc2o 6519  𝑚 cmap 6758  cdju 7165  inlcinl 7173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-1o 6525  df-2o 6526  df-map 6760  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  fodjuomnilemres  7276  fodjumkvlemres  7287
  Copyright terms: Public domain W3C validator