| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuf | GIF version | ||
| Description: Lemma for fodjuomni 7316 and fodjumkv 7327. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjuf.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| fodjuf.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| fodjuf.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fodjuf | ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6587 | . . . . 5 ⊢ ∅ ∈ 2o | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → ∅ ∈ 2o) |
| 3 | 1lt2o 6588 | . . . . 5 ⊢ 1o ∈ 2o | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → 1o ∈ 2o) |
| 5 | fodjuf.fo | . . . . 5 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
| 6 | 5 | fodjuomnilemdc 7311 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧)) |
| 7 | 2, 4, 6 | ifcldcd 3640 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o) |
| 8 | fodjuf.p | . . 3 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 9 | 7, 8 | fmptd 5789 | . 2 ⊢ (𝜑 → 𝑃:𝑂⟶2o) |
| 10 | 2onn 6667 | . . . 4 ⊢ 2o ∈ ω | |
| 11 | 10 | a1i 9 | . . 3 ⊢ (𝜑 → 2o ∈ ω) |
| 12 | fodjuf.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 13 | 11, 12 | elmapd 6809 | . 2 ⊢ (𝜑 → (𝑃 ∈ (2o ↑𝑚 𝑂) ↔ 𝑃:𝑂⟶2o)) |
| 14 | 9, 13 | mpbird 167 | 1 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ∅c0 3491 ifcif 3602 ↦ cmpt 4145 ωcom 4682 ⟶wf 5314 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6001 1oc1o 6555 2oc2o 6556 ↑𝑚 cmap 6795 ⊔ cdju 7204 inlcinl 7212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-1o 6562 df-2o 6563 df-map 6797 df-dju 7205 df-inl 7214 df-inr 7215 |
| This theorem is referenced by: fodjuomnilemres 7315 fodjumkvlemres 7326 |
| Copyright terms: Public domain | W3C validator |