ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuf GIF version

Theorem fodjuf 7121
Description: Lemma for fodjuomni 7125 and fodjumkv 7136. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjuf.o (𝜑𝑂𝑉)
Assertion
Ref Expression
fodjuf (𝜑𝑃 ∈ (2o𝑚 𝑂))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑃(𝑦,𝑧)   𝐹(𝑦)   𝑉(𝑦,𝑧)

Proof of Theorem fodjuf
StepHypRef Expression
1 0lt2o 6420 . . . . 5 ∅ ∈ 2o
21a1i 9 . . . 4 ((𝜑𝑦𝑂) → ∅ ∈ 2o)
3 1lt2o 6421 . . . . 5 1o ∈ 2o
43a1i 9 . . . 4 ((𝜑𝑦𝑂) → 1o ∈ 2o)
5 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
65fodjuomnilemdc 7120 . . . 4 ((𝜑𝑦𝑂) → DECID𝑧𝐴 (𝐹𝑦) = (inl‘𝑧))
72, 4, 6ifcldcd 3561 . . 3 ((𝜑𝑦𝑂) → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o)
8 fodjuf.p . . 3 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
97, 8fmptd 5650 . 2 (𝜑𝑃:𝑂⟶2o)
10 2onn 6500 . . . 4 2o ∈ ω
1110a1i 9 . . 3 (𝜑 → 2o ∈ ω)
12 fodjuf.o . . 3 (𝜑𝑂𝑉)
1311, 12elmapd 6640 . 2 (𝜑 → (𝑃 ∈ (2o𝑚 𝑂) ↔ 𝑃:𝑂⟶2o))
149, 13mpbird 166 1 (𝜑𝑃 ∈ (2o𝑚 𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wrex 2449  c0 3414  ifcif 3526  cmpt 4050  ωcom 4574  wf 5194  ontowfo 5196  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  cdju 7014  inlcinl 7022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-map 6628  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  fodjuomnilemres  7124  fodjumkvlemres  7135
  Copyright terms: Public domain W3C validator