Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuf | GIF version |
Description: Lemma for fodjuomni 7113 and fodjumkv 7124. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
fodjuf.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
fodjuf.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
Ref | Expression |
---|---|
fodjuf | ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6409 | . . . . 5 ⊢ ∅ ∈ 2o | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → ∅ ∈ 2o) |
3 | 1lt2o 6410 | . . . . 5 ⊢ 1o ∈ 2o | |
4 | 3 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → 1o ∈ 2o) |
5 | fodjuf.fo | . . . . 5 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
6 | 5 | fodjuomnilemdc 7108 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧)) |
7 | 2, 4, 6 | ifcldcd 3555 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o) |
8 | fodjuf.p | . . 3 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
9 | 7, 8 | fmptd 5639 | . 2 ⊢ (𝜑 → 𝑃:𝑂⟶2o) |
10 | 2onn 6489 | . . . 4 ⊢ 2o ∈ ω | |
11 | 10 | a1i 9 | . . 3 ⊢ (𝜑 → 2o ∈ ω) |
12 | fodjuf.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
13 | 11, 12 | elmapd 6628 | . 2 ⊢ (𝜑 → (𝑃 ∈ (2o ↑𝑚 𝑂) ↔ 𝑃:𝑂⟶2o)) |
14 | 9, 13 | mpbird 166 | 1 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∅c0 3409 ifcif 3520 ↦ cmpt 4043 ωcom 4567 ⟶wf 5184 –onto→wfo 5186 ‘cfv 5188 (class class class)co 5842 1oc1o 6377 2oc2o 6378 ↑𝑚 cmap 6614 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-1o 6384 df-2o 6385 df-map 6616 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: fodjuomnilemres 7112 fodjumkvlemres 7123 |
Copyright terms: Public domain | W3C validator |