| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuf | GIF version | ||
| Description: Lemma for fodjuomni 7224 and fodjumkv 7235. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjuf.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| fodjuf.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| fodjuf.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fodjuf | ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6508 | . . . . 5 ⊢ ∅ ∈ 2o | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → ∅ ∈ 2o) |
| 3 | 1lt2o 6509 | . . . . 5 ⊢ 1o ∈ 2o | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → 1o ∈ 2o) |
| 5 | fodjuf.fo | . . . . 5 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
| 6 | 5 | fodjuomnilemdc 7219 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧)) |
| 7 | 2, 4, 6 | ifcldcd 3598 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o) |
| 8 | fodjuf.p | . . 3 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 9 | 7, 8 | fmptd 5719 | . 2 ⊢ (𝜑 → 𝑃:𝑂⟶2o) |
| 10 | 2onn 6588 | . . . 4 ⊢ 2o ∈ ω | |
| 11 | 10 | a1i 9 | . . 3 ⊢ (𝜑 → 2o ∈ ω) |
| 12 | fodjuf.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 13 | 11, 12 | elmapd 6730 | . 2 ⊢ (𝜑 → (𝑃 ∈ (2o ↑𝑚 𝑂) ↔ 𝑃:𝑂⟶2o)) |
| 14 | 9, 13 | mpbird 167 | 1 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ∅c0 3451 ifcif 3562 ↦ cmpt 4095 ωcom 4627 ⟶wf 5255 –onto→wfo 5257 ‘cfv 5259 (class class class)co 5925 1oc1o 6476 2oc2o 6477 ↑𝑚 cmap 6716 ⊔ cdju 7112 inlcinl 7120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-1o 6483 df-2o 6484 df-map 6718 df-dju 7113 df-inl 7122 df-inr 7123 |
| This theorem is referenced by: fodjuomnilemres 7223 fodjumkvlemres 7234 |
| Copyright terms: Public domain | W3C validator |