| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuf | GIF version | ||
| Description: Lemma for fodjuomni 7251 and fodjumkv 7262. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjuf.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| fodjuf.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| fodjuf.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fodjuf | ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6527 | . . . . 5 ⊢ ∅ ∈ 2o | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → ∅ ∈ 2o) |
| 3 | 1lt2o 6528 | . . . . 5 ⊢ 1o ∈ 2o | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → 1o ∈ 2o) |
| 5 | fodjuf.fo | . . . . 5 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
| 6 | 5 | fodjuomnilemdc 7246 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧)) |
| 7 | 2, 4, 6 | ifcldcd 3608 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o) |
| 8 | fodjuf.p | . . 3 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 9 | 7, 8 | fmptd 5734 | . 2 ⊢ (𝜑 → 𝑃:𝑂⟶2o) |
| 10 | 2onn 6607 | . . . 4 ⊢ 2o ∈ ω | |
| 11 | 10 | a1i 9 | . . 3 ⊢ (𝜑 → 2o ∈ ω) |
| 12 | fodjuf.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 13 | 11, 12 | elmapd 6749 | . 2 ⊢ (𝜑 → (𝑃 ∈ (2o ↑𝑚 𝑂) ↔ 𝑃:𝑂⟶2o)) |
| 14 | 9, 13 | mpbird 167 | 1 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 ∅c0 3460 ifcif 3571 ↦ cmpt 4105 ωcom 4638 ⟶wf 5267 –onto→wfo 5269 ‘cfv 5271 (class class class)co 5944 1oc1o 6495 2oc2o 6496 ↑𝑚 cmap 6735 ⊔ cdju 7139 inlcinl 7147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-1o 6502 df-2o 6503 df-map 6737 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: fodjuomnilemres 7250 fodjumkvlemres 7261 |
| Copyright terms: Public domain | W3C validator |