![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fodjuf | GIF version |
Description: Lemma for fodjuomni 7147 and fodjumkv 7158. Domain and range of π. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | β’ (π β πΉ:πβontoβ(π΄ β π΅)) |
fodjuf.p | β’ π = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β , 1o)) |
fodjuf.o | β’ (π β π β π) |
Ref | Expression |
---|---|
fodjuf | β’ (π β π β (2o βπ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6442 | . . . . 5 β’ β β 2o | |
2 | 1 | a1i 9 | . . . 4 β’ ((π β§ π¦ β π) β β β 2o) |
3 | 1lt2o 6443 | . . . . 5 β’ 1o β 2o | |
4 | 3 | a1i 9 | . . . 4 β’ ((π β§ π¦ β π) β 1o β 2o) |
5 | fodjuf.fo | . . . . 5 β’ (π β πΉ:πβontoβ(π΄ β π΅)) | |
6 | 5 | fodjuomnilemdc 7142 | . . . 4 β’ ((π β§ π¦ β π) β DECID βπ§ β π΄ (πΉβπ¦) = (inlβπ§)) |
7 | 2, 4, 6 | ifcldcd 3571 | . . 3 β’ ((π β§ π¦ β π) β if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β , 1o) β 2o) |
8 | fodjuf.p | . . 3 β’ π = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β , 1o)) | |
9 | 7, 8 | fmptd 5671 | . 2 β’ (π β π:πβΆ2o) |
10 | 2onn 6522 | . . . 4 β’ 2o β Ο | |
11 | 10 | a1i 9 | . . 3 β’ (π β 2o β Ο) |
12 | fodjuf.o | . . 3 β’ (π β π β π) | |
13 | 11, 12 | elmapd 6662 | . 2 β’ (π β (π β (2o βπ π) β π:πβΆ2o)) |
14 | 9, 13 | mpbird 167 | 1 β’ (π β π β (2o βπ π)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 βwrex 2456 β c0 3423 ifcif 3535 β¦ cmpt 4065 Οcom 4590 βΆwf 5213 βontoβwfo 5215 βcfv 5217 (class class class)co 5875 1oc1o 6410 2oc2o 6411 βπ cmap 6648 β cdju 7036 inlcinl 7044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-1o 6417 df-2o 6418 df-map 6650 df-dju 7037 df-inl 7046 df-inr 7047 |
This theorem is referenced by: fodjuomnilemres 7146 fodjumkvlemres 7157 |
Copyright terms: Public domain | W3C validator |