ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuf GIF version

Theorem fodjuf 7312
Description: Lemma for fodjuomni 7316 and fodjumkv 7327. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjuf.o (𝜑𝑂𝑉)
Assertion
Ref Expression
fodjuf (𝜑𝑃 ∈ (2o𝑚 𝑂))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑃(𝑦,𝑧)   𝐹(𝑦)   𝑉(𝑦,𝑧)

Proof of Theorem fodjuf
StepHypRef Expression
1 0lt2o 6587 . . . . 5 ∅ ∈ 2o
21a1i 9 . . . 4 ((𝜑𝑦𝑂) → ∅ ∈ 2o)
3 1lt2o 6588 . . . . 5 1o ∈ 2o
43a1i 9 . . . 4 ((𝜑𝑦𝑂) → 1o ∈ 2o)
5 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
65fodjuomnilemdc 7311 . . . 4 ((𝜑𝑦𝑂) → DECID𝑧𝐴 (𝐹𝑦) = (inl‘𝑧))
72, 4, 6ifcldcd 3640 . . 3 ((𝜑𝑦𝑂) → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o)
8 fodjuf.p . . 3 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
97, 8fmptd 5789 . 2 (𝜑𝑃:𝑂⟶2o)
10 2onn 6667 . . . 4 2o ∈ ω
1110a1i 9 . . 3 (𝜑 → 2o ∈ ω)
12 fodjuf.o . . 3 (𝜑𝑂𝑉)
1311, 12elmapd 6809 . 2 (𝜑 → (𝑃 ∈ (2o𝑚 𝑂) ↔ 𝑃:𝑂⟶2o))
149, 13mpbird 167 1 (𝜑𝑃 ∈ (2o𝑚 𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  c0 3491  ifcif 3602  cmpt 4145  ωcom 4682  wf 5314  ontowfo 5316  cfv 5318  (class class class)co 6001  1oc1o 6555  2oc2o 6556  𝑚 cmap 6795  cdju 7204  inlcinl 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-1o 6562  df-2o 6563  df-map 6797  df-dju 7205  df-inl 7214  df-inr 7215
This theorem is referenced by:  fodjuomnilemres  7315  fodjumkvlemres  7326
  Copyright terms: Public domain W3C validator