Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuf | GIF version |
Description: Lemma for fodjuomni 7125 and fodjumkv 7136. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjuf.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
fodjuf.p | ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
fodjuf.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
Ref | Expression |
---|---|
fodjuf | ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6420 | . . . . 5 ⊢ ∅ ∈ 2o | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → ∅ ∈ 2o) |
3 | 1lt2o 6421 | . . . . 5 ⊢ 1o ∈ 2o | |
4 | 3 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → 1o ∈ 2o) |
5 | fodjuf.fo | . . . . 5 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
6 | 5 | fodjuomnilemdc 7120 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧)) |
7 | 2, 4, 6 | ifcldcd 3561 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑂) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) ∈ 2o) |
8 | fodjuf.p | . . 3 ⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
9 | 7, 8 | fmptd 5650 | . 2 ⊢ (𝜑 → 𝑃:𝑂⟶2o) |
10 | 2onn 6500 | . . . 4 ⊢ 2o ∈ ω | |
11 | 10 | a1i 9 | . . 3 ⊢ (𝜑 → 2o ∈ ω) |
12 | fodjuf.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
13 | 11, 12 | elmapd 6640 | . 2 ⊢ (𝜑 → (𝑃 ∈ (2o ↑𝑚 𝑂) ↔ 𝑃:𝑂⟶2o)) |
14 | 9, 13 | mpbird 166 | 1 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∅c0 3414 ifcif 3526 ↦ cmpt 4050 ωcom 4574 ⟶wf 5194 –onto→wfo 5196 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 2oc2o 6389 ↑𝑚 cmap 6626 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-1o 6395 df-2o 6396 df-map 6628 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: fodjuomnilemres 7124 fodjumkvlemres 7135 |
Copyright terms: Public domain | W3C validator |