Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfsellemcl | GIF version |
Description: Lemma for nninfself 13547. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
nninfsellemcl | ⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6383 | . . 3 ⊢ 1o ∈ 2o | |
2 | 1 | a1i 9 | . 2 ⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → 1o ∈ 2o) |
3 | 0lt2o 6382 | . . 3 ⊢ ∅ ∈ 2o | |
4 | 3 | a1i 9 | . 2 ⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → ∅ ∈ 2o) |
5 | nninfsellemdc 13544 | . 2 ⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → DECID ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o) | |
6 | 2, 4, 5 | ifcldcd 3540 | 1 ⊢ ((𝑄 ∈ (2o ↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ∅c0 3394 ifcif 3505 ↦ cmpt 4025 suc csuc 4324 ωcom 4547 ‘cfv 5167 (class class class)co 5818 1oc1o 6350 2oc2o 6351 ↑𝑚 cmap 6586 ℕ∞xnninf 7053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1o 6357 df-2o 6358 df-map 6588 df-nninf 7054 |
This theorem is referenced by: nninfsellemsuc 13546 nninfself 13547 |
Copyright terms: Public domain | W3C validator |