Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemcl GIF version

Theorem nninfsellemcl 13891
Description: Lemma for nninfself 13893. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
nninfsellemcl ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑖,𝑘
Allowed substitution hints:   𝑄(𝑖)   𝑁(𝑖)

Proof of Theorem nninfsellemcl
StepHypRef Expression
1 1lt2o 6410 . . 3 1o ∈ 2o
21a1i 9 . 2 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → 1o ∈ 2o)
3 0lt2o 6409 . . 3 ∅ ∈ 2o
43a1i 9 . 2 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → ∅ ∈ 2o)
5 nninfsellemdc 13890 . 2 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
62, 4, 5ifcldcd 3555 1 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  c0 3409  ifcif 3520  cmpt 4043  suc csuc 4343  ωcom 4567  cfv 5188  (class class class)co 5842  1oc1o 6377  2oc2o 6378  𝑚 cmap 6614  xnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  nninfsellemsuc  13892  nninfself  13893
  Copyright terms: Public domain W3C validator