ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq GIF version

Theorem xpsfeq 13148
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6526 . . . 4 ∅ ∈ 2o
2 funfvex 5592 . . . . 5 ((Fun 𝐺 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ V)
32funfni 5375 . . . 4 ((𝐺 Fn 2o ∧ ∅ ∈ 2o) → (𝐺‘∅) ∈ V)
41, 3mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘∅) ∈ V)
5 1lt2o 6527 . . . 4 1o ∈ 2o
6 funfvex 5592 . . . . 5 ((Fun 𝐺 ∧ 1o ∈ dom 𝐺) → (𝐺‘1o) ∈ V)
76funfni 5375 . . . 4 ((𝐺 Fn 2o ∧ 1o ∈ 2o) → (𝐺‘1o) ∈ V)
85, 7mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘1o) ∈ V)
9 fnpr2o 13142 . . 3 (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
104, 8, 9syl2anc 411 . 2 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
11 id 19 . 2 (𝐺 Fn 2o𝐺 Fn 2o)
12 elpri 3655 . . . 4 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 df2o3 6515 . . . 4 2o = {∅, 1o}
1412, 13eleq2s 2299 . . 3 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
15 fvpr0o 13144 . . . . . . 7 ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
164, 15syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
1716adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
18 fveq2 5575 . . . . . 6 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
1918adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
20 fveq2 5575 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
2120adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → (𝐺𝑘) = (𝐺‘∅))
2217, 19, 213eqtr4d 2247 . . . 4 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
23 fvpr1o 13145 . . . . . . 7 ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
248, 23syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
2524adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
26 fveq2 5575 . . . . . 6 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
2726adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
28 fveq2 5575 . . . . . 6 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
2928adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → (𝐺𝑘) = (𝐺‘1o))
3025, 27, 293eqtr4d 2247 . . . 4 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3122, 30jaodan 798 . . 3 ((𝐺 Fn 2o ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3214, 31sylan2 286 . 2 ((𝐺 Fn 2o𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3310, 11, 32eqfnfvd 5679 1 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1372  wcel 2175  Vcvv 2771  c0 3459  {cpr 3633  cop 3635   Fn wfn 5265  cfv 5270  1oc1o 6494  2oc2o 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-1o 6501  df-2o 6502
This theorem is referenced by:  xpsff1o  13152
  Copyright terms: Public domain W3C validator