ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq GIF version

Theorem xpsfeq 12931
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6496 . . . 4 ∅ ∈ 2o
2 funfvex 5572 . . . . 5 ((Fun 𝐺 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ V)
32funfni 5355 . . . 4 ((𝐺 Fn 2o ∧ ∅ ∈ 2o) → (𝐺‘∅) ∈ V)
41, 3mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘∅) ∈ V)
5 1lt2o 6497 . . . 4 1o ∈ 2o
6 funfvex 5572 . . . . 5 ((Fun 𝐺 ∧ 1o ∈ dom 𝐺) → (𝐺‘1o) ∈ V)
76funfni 5355 . . . 4 ((𝐺 Fn 2o ∧ 1o ∈ 2o) → (𝐺‘1o) ∈ V)
85, 7mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘1o) ∈ V)
9 fnpr2o 12925 . . 3 (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
104, 8, 9syl2anc 411 . 2 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
11 id 19 . 2 (𝐺 Fn 2o𝐺 Fn 2o)
12 elpri 3642 . . . 4 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 df2o3 6485 . . . 4 2o = {∅, 1o}
1412, 13eleq2s 2288 . . 3 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
15 fvpr0o 12927 . . . . . . 7 ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
164, 15syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
1716adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
18 fveq2 5555 . . . . . 6 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
1918adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
20 fveq2 5555 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
2120adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → (𝐺𝑘) = (𝐺‘∅))
2217, 19, 213eqtr4d 2236 . . . 4 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
23 fvpr1o 12928 . . . . . . 7 ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
248, 23syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
2524adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
26 fveq2 5555 . . . . . 6 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
2726adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
28 fveq2 5555 . . . . . 6 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
2928adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → (𝐺𝑘) = (𝐺‘1o))
3025, 27, 293eqtr4d 2236 . . . 4 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3122, 30jaodan 798 . . 3 ((𝐺 Fn 2o ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3214, 31sylan2 286 . 2 ((𝐺 Fn 2o𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3310, 11, 32eqfnfvd 5659 1 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  Vcvv 2760  c0 3447  {cpr 3620  cop 3622   Fn wfn 5250  cfv 5255  1oc1o 6464  2oc2o 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-1o 6471  df-2o 6472
This theorem is referenced by:  xpsff1o  12935
  Copyright terms: Public domain W3C validator