ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq GIF version

Theorem xpsfeq 13262
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6545 . . . 4 ∅ ∈ 2o
2 funfvex 5611 . . . . 5 ((Fun 𝐺 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ V)
32funfni 5390 . . . 4 ((𝐺 Fn 2o ∧ ∅ ∈ 2o) → (𝐺‘∅) ∈ V)
41, 3mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘∅) ∈ V)
5 1lt2o 6546 . . . 4 1o ∈ 2o
6 funfvex 5611 . . . . 5 ((Fun 𝐺 ∧ 1o ∈ dom 𝐺) → (𝐺‘1o) ∈ V)
76funfni 5390 . . . 4 ((𝐺 Fn 2o ∧ 1o ∈ 2o) → (𝐺‘1o) ∈ V)
85, 7mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘1o) ∈ V)
9 fnpr2o 13256 . . 3 (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
104, 8, 9syl2anc 411 . 2 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
11 id 19 . 2 (𝐺 Fn 2o𝐺 Fn 2o)
12 elpri 3661 . . . 4 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 df2o3 6534 . . . 4 2o = {∅, 1o}
1412, 13eleq2s 2301 . . 3 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
15 fvpr0o 13258 . . . . . . 7 ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
164, 15syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
1716adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
18 fveq2 5594 . . . . . 6 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
1918adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
20 fveq2 5594 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
2120adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → (𝐺𝑘) = (𝐺‘∅))
2217, 19, 213eqtr4d 2249 . . . 4 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
23 fvpr1o 13259 . . . . . . 7 ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
248, 23syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
2524adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
26 fveq2 5594 . . . . . 6 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
2726adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
28 fveq2 5594 . . . . . 6 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
2928adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → (𝐺𝑘) = (𝐺‘1o))
3025, 27, 293eqtr4d 2249 . . . 4 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3122, 30jaodan 799 . . 3 ((𝐺 Fn 2o ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3214, 31sylan2 286 . 2 ((𝐺 Fn 2o𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3310, 11, 32eqfnfvd 5698 1 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  Vcvv 2773  c0 3464  {cpr 3639  cop 3641   Fn wfn 5280  cfv 5285  1oc1o 6513  2oc2o 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-1o 6520  df-2o 6521
This theorem is referenced by:  xpsff1o  13266
  Copyright terms: Public domain W3C validator