ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq GIF version

Theorem xpsfeq 12770
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6445 . . . 4 ∅ ∈ 2o
2 funfvex 5534 . . . . 5 ((Fun 𝐺 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ V)
32funfni 5318 . . . 4 ((𝐺 Fn 2o ∧ ∅ ∈ 2o) → (𝐺‘∅) ∈ V)
41, 3mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘∅) ∈ V)
5 1lt2o 6446 . . . 4 1o ∈ 2o
6 funfvex 5534 . . . . 5 ((Fun 𝐺 ∧ 1o ∈ dom 𝐺) → (𝐺‘1o) ∈ V)
76funfni 5318 . . . 4 ((𝐺 Fn 2o ∧ 1o ∈ 2o) → (𝐺‘1o) ∈ V)
85, 7mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘1o) ∈ V)
9 fnpr2o 12764 . . 3 (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
104, 8, 9syl2anc 411 . 2 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
11 id 19 . 2 (𝐺 Fn 2o𝐺 Fn 2o)
12 elpri 3617 . . . 4 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 df2o3 6434 . . . 4 2o = {∅, 1o}
1412, 13eleq2s 2272 . . 3 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
15 fvpr0o 12766 . . . . . . 7 ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
164, 15syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
1716adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
18 fveq2 5517 . . . . . 6 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
1918adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
20 fveq2 5517 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
2120adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → (𝐺𝑘) = (𝐺‘∅))
2217, 19, 213eqtr4d 2220 . . . 4 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
23 fvpr1o 12767 . . . . . . 7 ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
248, 23syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
2524adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
26 fveq2 5517 . . . . . 6 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
2726adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
28 fveq2 5517 . . . . . 6 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
2928adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → (𝐺𝑘) = (𝐺‘1o))
3025, 27, 293eqtr4d 2220 . . . 4 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3122, 30jaodan 797 . . 3 ((𝐺 Fn 2o ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3214, 31sylan2 286 . 2 ((𝐺 Fn 2o𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3310, 11, 32eqfnfvd 5619 1 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  Vcvv 2739  c0 3424  {cpr 3595  cop 3597   Fn wfn 5213  cfv 5218  1oc1o 6413  2oc2o 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-1o 6420  df-2o 6421
This theorem is referenced by:  xpsff1o  12774
  Copyright terms: Public domain W3C validator