ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfeq GIF version

Theorem xpsfeq 13373
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0lt2o 6585 . . . 4 ∅ ∈ 2o
2 funfvex 5643 . . . . 5 ((Fun 𝐺 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ V)
32funfni 5422 . . . 4 ((𝐺 Fn 2o ∧ ∅ ∈ 2o) → (𝐺‘∅) ∈ V)
41, 3mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘∅) ∈ V)
5 1lt2o 6586 . . . 4 1o ∈ 2o
6 funfvex 5643 . . . . 5 ((Fun 𝐺 ∧ 1o ∈ dom 𝐺) → (𝐺‘1o) ∈ V)
76funfni 5422 . . . 4 ((𝐺 Fn 2o ∧ 1o ∈ 2o) → (𝐺‘1o) ∈ V)
85, 7mpan2 425 . . 3 (𝐺 Fn 2o → (𝐺‘1o) ∈ V)
9 fnpr2o 13367 . . 3 (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
104, 8, 9syl2anc 411 . 2 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
11 id 19 . 2 (𝐺 Fn 2o𝐺 Fn 2o)
12 elpri 3689 . . . 4 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
13 df2o3 6574 . . . 4 2o = {∅, 1o}
1412, 13eleq2s 2324 . . 3 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
15 fvpr0o 13369 . . . . . . 7 ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
164, 15syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
1716adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
18 fveq2 5626 . . . . . 6 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
1918adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
20 fveq2 5626 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
2120adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = ∅) → (𝐺𝑘) = (𝐺‘∅))
2217, 19, 213eqtr4d 2272 . . . 4 ((𝐺 Fn 2o𝑘 = ∅) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
23 fvpr1o 13370 . . . . . . 7 ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
248, 23syl 14 . . . . . 6 (𝐺 Fn 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
2524adantr 276 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
26 fveq2 5626 . . . . . 6 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
2726adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
28 fveq2 5626 . . . . . 6 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
2928adantl 277 . . . . 5 ((𝐺 Fn 2o𝑘 = 1o) → (𝐺𝑘) = (𝐺‘1o))
3025, 27, 293eqtr4d 2272 . . . 4 ((𝐺 Fn 2o𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3122, 30jaodan 802 . . 3 ((𝐺 Fn 2o ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3214, 31sylan2 286 . 2 ((𝐺 Fn 2o𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
3310, 11, 32eqfnfvd 5734 1 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  {cpr 3667  cop 3669   Fn wfn 5312  cfv 5317  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-1o 6560  df-2o 6561
This theorem is referenced by:  xpsff1o  13377
  Copyright terms: Public domain W3C validator