| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stexg | GIF version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 1stexg | ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | fo1st 6301 | . . . 4 ⊢ 1st :V–onto→V | |
| 3 | fofn 5549 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
| 5 | funfvex 5643 | . . . 4 ⊢ ((Fun 1st ∧ 𝐴 ∈ dom 1st ) → (1st ‘𝐴) ∈ V) | |
| 6 | 5 | funfni 5422 | . . 3 ⊢ ((1st Fn V ∧ 𝐴 ∈ V) → (1st ‘𝐴) ∈ V) |
| 7 | 4, 6 | mpan 424 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 Fn wfn 5312 –onto→wfo 5315 ‘cfv 5317 1st c1st 6282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-1st 6284 |
| This theorem is referenced by: elxp7 6314 xpopth 6320 eqop 6321 2nd1st 6324 2ndrn 6327 releldm2 6329 reldm 6330 dfoprab3 6335 elopabi 6339 mpofvex 6349 dfmpo 6367 cnvf1olem 6368 cnvoprab 6378 f1od2 6379 disjxp1 6380 xpmapenlem 7006 cnref1o 9842 fsumcnv 11943 fprodcnv 12131 qredeu 12614 qnumval 12702 xpsff1o 13377 txbas 14926 txdis 14945 vtxvalg 15811 vtxex 15813 |
| Copyright terms: Public domain | W3C validator |