ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stexg GIF version

Theorem 1stexg 6170
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
1stexg (š“ ∈ š‘‰ → (1st ā€˜š“) ∈ V)

Proof of Theorem 1stexg
StepHypRef Expression
1 elex 2750 . 2 (š“ ∈ š‘‰ → š“ ∈ V)
2 fo1st 6160 . . . 4 1st :V–onto→V
3 fofn 5442 . . . 4 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . 3 1st Fn V
5 funfvex 5534 . . . 4 ((Fun 1st ∧ š“ ∈ dom 1st ) → (1st ā€˜š“) ∈ V)
65funfni 5318 . . 3 ((1st Fn V ∧ š“ ∈ V) → (1st ā€˜š“) ∈ V)
74, 6mpan 424 . 2 (š“ ∈ V → (1st ā€˜š“) ∈ V)
81, 7syl 14 1 (š“ ∈ š‘‰ → (1st ā€˜š“) ∈ V)
Colors of variables: wff set class
Syntax hints:   → wi 4   ∈ wcel 2148  Vcvv 2739   Fn wfn 5213  ā€“onto→wfo 5216  ā€˜cfv 5218  1st c1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-1st 6143
This theorem is referenced by:  elxp7  6173  xpopth  6179  eqop  6180  2nd1st  6183  2ndrn  6186  releldm2  6188  reldm  6189  dfoprab3  6194  elopabi  6198  mpofvex  6206  dfmpo  6226  cnvf1olem  6227  cnvoprab  6237  f1od2  6238  disjxp1  6239  xpmapenlem  6851  cnref1o  9652  fsumcnv  11447  fprodcnv  11635  qredeu  12099  qnumval  12187  xpsff1o  12773  txbas  13843  txdis  13862
  Copyright terms: Public domain W3C validator