| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stexg | GIF version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 1stexg | ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | fo1st 6256 | . . . 4 ⊢ 1st :V–onto→V | |
| 3 | fofn 5512 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
| 5 | funfvex 5606 | . . . 4 ⊢ ((Fun 1st ∧ 𝐴 ∈ dom 1st ) → (1st ‘𝐴) ∈ V) | |
| 6 | 5 | funfni 5385 | . . 3 ⊢ ((1st Fn V ∧ 𝐴 ∈ V) → (1st ‘𝐴) ∈ V) |
| 7 | 4, 6 | mpan 424 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 Fn wfn 5275 –onto→wfo 5278 ‘cfv 5280 1st c1st 6237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fo 5286 df-fv 5288 df-1st 6239 |
| This theorem is referenced by: elxp7 6269 xpopth 6275 eqop 6276 2nd1st 6279 2ndrn 6282 releldm2 6284 reldm 6285 dfoprab3 6290 elopabi 6294 mpofvex 6304 dfmpo 6322 cnvf1olem 6323 cnvoprab 6333 f1od2 6334 disjxp1 6335 xpmapenlem 6961 cnref1o 9792 fsumcnv 11823 fprodcnv 12011 qredeu 12494 qnumval 12582 xpsff1o 13256 txbas 14805 txdis 14824 vtxvalg 15690 vtxex 15692 |
| Copyright terms: Public domain | W3C validator |