Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1stexg | GIF version |
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
Ref | Expression |
---|---|
1stexg | ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | fo1st 6136 | . . . 4 ⊢ 1st :V–onto→V | |
3 | fofn 5422 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
5 | funfvex 5513 | . . . 4 ⊢ ((Fun 1st ∧ 𝐴 ∈ dom 1st ) → (1st ‘𝐴) ∈ V) | |
6 | 5 | funfni 5298 | . . 3 ⊢ ((1st Fn V ∧ 𝐴 ∈ V) → (1st ‘𝐴) ∈ V) |
7 | 4, 6 | mpan 422 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) |
8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 Fn wfn 5193 –onto→wfo 5196 ‘cfv 5198 1st c1st 6117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 |
This theorem is referenced by: elxp7 6149 xpopth 6155 eqop 6156 2nd1st 6159 2ndrn 6162 releldm2 6164 reldm 6165 dfoprab3 6170 elopabi 6174 mpofvex 6182 dfmpo 6202 cnvf1olem 6203 cnvoprab 6213 f1od2 6214 disjxp1 6215 xpmapenlem 6827 cnref1o 9609 fsumcnv 11400 fprodcnv 11588 qredeu 12051 qnumval 12139 txbas 13052 txdis 13071 |
Copyright terms: Public domain | W3C validator |