ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stexg GIF version

Theorem 1stexg 5954
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
1stexg (𝐴𝑉 → (1st𝐴) ∈ V)

Proof of Theorem 1stexg
StepHypRef Expression
1 elex 2633 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo1st 5944 . . . 4 1st :V–onto→V
3 fofn 5250 . . . 4 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 7 . . 3 1st Fn V
5 funfvex 5337 . . . 4 ((Fun 1st𝐴 ∈ dom 1st ) → (1st𝐴) ∈ V)
65funfni 5129 . . 3 ((1st Fn V ∧ 𝐴 ∈ V) → (1st𝐴) ∈ V)
74, 6mpan 416 . 2 (𝐴 ∈ V → (1st𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (1st𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1439  Vcvv 2622   Fn wfn 5025  ontowfo 5028  cfv 5030  1st c1st 5925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-sbc 2844  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fo 5036  df-fv 5038  df-1st 5927
This theorem is referenced by:  elxp7  5957  xpopth  5962  eqop  5963  2nd1st  5966  2ndrn  5969  releldm2  5971  reldm  5972  dfoprab3  5977  elopabi  5981  mpt2fvex  5989  dfmpt2  6004  cnvf1olem  6005  cnvoprab  6015  f1od2  6016  disjxp1  6017  xpmapenlem  6621  cnref1o  9196  fsumcnv  10894  qredeu  11420  qnumval  11504
  Copyright terms: Public domain W3C validator