![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stexg | GIF version |
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
Ref | Expression |
---|---|
1stexg | ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2633 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | fo1st 5944 | . . . 4 ⊢ 1st :V–onto→V | |
3 | fofn 5250 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
4 | 2, 3 | ax-mp 7 | . . 3 ⊢ 1st Fn V |
5 | funfvex 5337 | . . . 4 ⊢ ((Fun 1st ∧ 𝐴 ∈ dom 1st ) → (1st ‘𝐴) ∈ V) | |
6 | 5 | funfni 5129 | . . 3 ⊢ ((1st Fn V ∧ 𝐴 ∈ V) → (1st ‘𝐴) ∈ V) |
7 | 4, 6 | mpan 416 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) |
8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1439 Vcvv 2622 Fn wfn 5025 –onto→wfo 5028 ‘cfv 5030 1st c1st 5925 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-un 4271 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-sbc 2844 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-mpt 3909 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-fo 5036 df-fv 5038 df-1st 5927 |
This theorem is referenced by: elxp7 5957 xpopth 5962 eqop 5963 2nd1st 5966 2ndrn 5969 releldm2 5971 reldm 5972 dfoprab3 5977 elopabi 5981 mpt2fvex 5989 dfmpt2 6004 cnvf1olem 6005 cnvoprab 6015 f1od2 6016 disjxp1 6017 xpmapenlem 6621 cnref1o 9196 fsumcnv 10894 qredeu 11420 qnumval 11504 |
Copyright terms: Public domain | W3C validator |