ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stexg GIF version

Theorem 1stexg 6146
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
1stexg (𝐴𝑉 → (1st𝐴) ∈ V)

Proof of Theorem 1stexg
StepHypRef Expression
1 elex 2741 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo1st 6136 . . . 4 1st :V–onto→V
3 fofn 5422 . . . 4 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . 3 1st Fn V
5 funfvex 5513 . . . 4 ((Fun 1st𝐴 ∈ dom 1st ) → (1st𝐴) ∈ V)
65funfni 5298 . . 3 ((1st Fn V ∧ 𝐴 ∈ V) → (1st𝐴) ∈ V)
74, 6mpan 422 . 2 (𝐴 ∈ V → (1st𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (1st𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  Vcvv 2730   Fn wfn 5193  ontowfo 5196  cfv 5198  1st c1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-1st 6119
This theorem is referenced by:  elxp7  6149  xpopth  6155  eqop  6156  2nd1st  6159  2ndrn  6162  releldm2  6164  reldm  6165  dfoprab3  6170  elopabi  6174  mpofvex  6182  dfmpo  6202  cnvf1olem  6203  cnvoprab  6213  f1od2  6214  disjxp1  6215  xpmapenlem  6827  cnref1o  9609  fsumcnv  11400  fprodcnv  11588  qredeu  12051  qnumval  12139  txbas  13052  txdis  13071
  Copyright terms: Public domain W3C validator