| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stexg | GIF version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 1stexg | ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | fo1st 6224 | . . . 4 ⊢ 1st :V–onto→V | |
| 3 | fofn 5485 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
| 5 | funfvex 5578 | . . . 4 ⊢ ((Fun 1st ∧ 𝐴 ∈ dom 1st ) → (1st ‘𝐴) ∈ V) | |
| 6 | 5 | funfni 5361 | . . 3 ⊢ ((1st Fn V ∧ 𝐴 ∈ V) → (1st ‘𝐴) ∈ V) |
| 7 | 4, 6 | mpan 424 | . 2 ⊢ (𝐴 ∈ V → (1st ‘𝐴) ∈ V) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 Fn wfn 5254 –onto→wfo 5257 ‘cfv 5259 1st c1st 6205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 df-fv 5267 df-1st 6207 |
| This theorem is referenced by: elxp7 6237 xpopth 6243 eqop 6244 2nd1st 6247 2ndrn 6250 releldm2 6252 reldm 6253 dfoprab3 6258 elopabi 6262 mpofvex 6272 dfmpo 6290 cnvf1olem 6291 cnvoprab 6301 f1od2 6302 disjxp1 6303 xpmapenlem 6919 cnref1o 9742 fsumcnv 11619 fprodcnv 11807 qredeu 12290 qnumval 12378 xpsff1o 13051 txbas 14578 txdis 14597 |
| Copyright terms: Public domain | W3C validator |