ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg GIF version

Theorem 2ndexg 6183
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg (𝐴𝑉 → (2nd𝐴) ∈ V)

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2760 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo2nd 6173 . . . 4 2nd :V–onto→V
3 fofn 5452 . . . 4 (2nd :V–onto→V → 2nd Fn V)
42, 3ax-mp 5 . . 3 2nd Fn V
5 funfvex 5544 . . . 4 ((Fun 2nd𝐴 ∈ dom 2nd ) → (2nd𝐴) ∈ V)
65funfni 5328 . . 3 ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd𝐴) ∈ V)
74, 6mpan 424 . 2 (𝐴 ∈ V → (2nd𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (2nd𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  Vcvv 2749   Fn wfn 5223  ontowfo 5226  cfv 5228  2nd c2nd 6154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fo 5234  df-fv 5236  df-2nd 6156
This theorem is referenced by:  elxp7  6185  xpopth  6191  eqop  6192  op1steq  6194  2nd1st  6195  2ndrn  6198  dfoprab3  6206  elopabi  6210  mpofvex  6218  dfmpo  6238  cnvf1olem  6239  cnvoprab  6249  f1od2  6250  xpmapenlem  6863  cc2lem  7279  cnref1o  9664  fsumcnv  11459  fprodcnv  11647  qredeu  12111  qdenval  12200  xpsff1o  12787  txbas  14054  txdis  14073
  Copyright terms: Public domain W3C validator