| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndexg | GIF version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 2ndexg | ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2784 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | fo2nd 6251 | . . . 4 ⊢ 2nd :V–onto→V | |
| 3 | fofn 5507 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
| 5 | funfvex 5600 | . . . 4 ⊢ ((Fun 2nd ∧ 𝐴 ∈ dom 2nd ) → (2nd ‘𝐴) ∈ V) | |
| 6 | 5 | funfni 5381 | . . 3 ⊢ ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd ‘𝐴) ∈ V) |
| 7 | 4, 6 | mpan 424 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) ∈ V) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 Fn wfn 5271 –onto→wfo 5274 ‘cfv 5276 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 df-2nd 6234 |
| This theorem is referenced by: elxp7 6263 xpopth 6269 eqop 6270 op1steq 6272 2nd1st 6273 2ndrn 6276 dfoprab3 6284 elopabi 6288 mpofvex 6298 dfmpo 6316 cnvf1olem 6317 cnvoprab 6327 f1od2 6328 xpmapenlem 6953 cc2lem 7385 cnref1o 9779 fsumcnv 11792 fprodcnv 11980 qredeu 12463 qdenval 12552 xpsff1o 13225 txbas 14774 txdis 14793 iedgvalg 15660 iedgex 15662 edgvalg 15700 |
| Copyright terms: Public domain | W3C validator |