Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndexg | GIF version |
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
Ref | Expression |
---|---|
2ndexg | ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | fo2nd 6126 | . . . 4 ⊢ 2nd :V–onto→V | |
3 | fofn 5412 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
5 | funfvex 5503 | . . . 4 ⊢ ((Fun 2nd ∧ 𝐴 ∈ dom 2nd ) → (2nd ‘𝐴) ∈ V) | |
6 | 5 | funfni 5288 | . . 3 ⊢ ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd ‘𝐴) ∈ V) |
7 | 4, 6 | mpan 421 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) ∈ V) |
8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 Fn wfn 5183 –onto→wfo 5186 ‘cfv 5188 2nd c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-2nd 6109 |
This theorem is referenced by: elxp7 6138 xpopth 6144 eqop 6145 op1steq 6147 2nd1st 6148 2ndrn 6151 dfoprab3 6159 elopabi 6163 mpofvex 6171 dfmpo 6191 cnvf1olem 6192 cnvoprab 6202 f1od2 6203 xpmapenlem 6815 cc2lem 7207 cnref1o 9588 fsumcnv 11378 fprodcnv 11566 qredeu 12029 qdenval 12118 txbas 12898 txdis 12917 |
Copyright terms: Public domain | W3C validator |