| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndexg | GIF version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 2ndexg | ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2791 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | fo2nd 6274 | . . . 4 ⊢ 2nd :V–onto→V | |
| 3 | fofn 5526 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
| 5 | funfvex 5620 | . . . 4 ⊢ ((Fun 2nd ∧ 𝐴 ∈ dom 2nd ) → (2nd ‘𝐴) ∈ V) | |
| 6 | 5 | funfni 5399 | . . 3 ⊢ ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd ‘𝐴) ∈ V) |
| 7 | 4, 6 | mpan 424 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) ∈ V) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 Fn wfn 5289 –onto→wfo 5292 ‘cfv 5294 2nd c2nd 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-2nd 6257 |
| This theorem is referenced by: elxp7 6286 xpopth 6292 eqop 6293 op1steq 6295 2nd1st 6296 2ndrn 6299 dfoprab3 6307 elopabi 6311 mpofvex 6321 dfmpo 6339 cnvf1olem 6340 cnvoprab 6350 f1od2 6351 xpmapenlem 6978 cc2lem 7420 cnref1o 9814 fsumcnv 11914 fprodcnv 12102 qredeu 12585 qdenval 12674 xpsff1o 13348 txbas 14897 txdis 14916 iedgvalg 15783 iedgex 15785 edgvalg 15825 |
| Copyright terms: Public domain | W3C validator |