ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg GIF version

Theorem 2ndexg 6320
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg (𝐴𝑉 → (2nd𝐴) ∈ V)

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2811 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo2nd 6310 . . . 4 2nd :V–onto→V
3 fofn 5552 . . . 4 (2nd :V–onto→V → 2nd Fn V)
42, 3ax-mp 5 . . 3 2nd Fn V
5 funfvex 5646 . . . 4 ((Fun 2nd𝐴 ∈ dom 2nd ) → (2nd𝐴) ∈ V)
65funfni 5423 . . 3 ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd𝐴) ∈ V)
74, 6mpan 424 . 2 (𝐴 ∈ V → (2nd𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (2nd𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799   Fn wfn 5313  ontowfo 5316  cfv 5318  2nd c2nd 6291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-2nd 6293
This theorem is referenced by:  elxp7  6322  xpopth  6328  eqop  6329  op1steq  6331  2nd1st  6332  2ndrn  6335  dfoprab3  6343  elopabi  6347  mpofvex  6357  dfmpo  6375  cnvf1olem  6376  cnvoprab  6386  f1od2  6387  xpmapenlem  7018  cc2lem  7460  cnref1o  9854  fsumcnv  11956  fprodcnv  12144  qredeu  12627  qdenval  12716  xpsff1o  13390  txbas  14940  txdis  14959  iedgvalg  15826  iedgex  15828  edgvalg  15868  wlkelvv  16070  wlk2f  16072
  Copyright terms: Public domain W3C validator