ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg GIF version

Theorem 2ndexg 6227
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg (𝐴𝑉 → (2nd𝐴) ∈ V)

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2774 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo2nd 6217 . . . 4 2nd :V–onto→V
3 fofn 5483 . . . 4 (2nd :V–onto→V → 2nd Fn V)
42, 3ax-mp 5 . . 3 2nd Fn V
5 funfvex 5576 . . . 4 ((Fun 2nd𝐴 ∈ dom 2nd ) → (2nd𝐴) ∈ V)
65funfni 5359 . . 3 ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd𝐴) ∈ V)
74, 6mpan 424 . 2 (𝐴 ∈ V → (2nd𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (2nd𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763   Fn wfn 5254  ontowfo 5257  cfv 5259  2nd c2nd 6198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-2nd 6200
This theorem is referenced by:  elxp7  6229  xpopth  6235  eqop  6236  op1steq  6238  2nd1st  6239  2ndrn  6242  dfoprab3  6250  elopabi  6254  mpofvex  6264  dfmpo  6282  cnvf1olem  6283  cnvoprab  6293  f1od2  6294  xpmapenlem  6911  cc2lem  7335  cnref1o  9727  fsumcnv  11604  fprodcnv  11792  qredeu  12275  qdenval  12364  xpsff1o  13002  txbas  14504  txdis  14523
  Copyright terms: Public domain W3C validator