ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg GIF version

Theorem 2ndexg 6284
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg (𝐴𝑉 → (2nd𝐴) ∈ V)

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2791 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo2nd 6274 . . . 4 2nd :V–onto→V
3 fofn 5526 . . . 4 (2nd :V–onto→V → 2nd Fn V)
42, 3ax-mp 5 . . 3 2nd Fn V
5 funfvex 5620 . . . 4 ((Fun 2nd𝐴 ∈ dom 2nd ) → (2nd𝐴) ∈ V)
65funfni 5399 . . 3 ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd𝐴) ∈ V)
74, 6mpan 424 . 2 (𝐴 ∈ V → (2nd𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (2nd𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  Vcvv 2779   Fn wfn 5289  ontowfo 5292  cfv 5294  2nd c2nd 6255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-2nd 6257
This theorem is referenced by:  elxp7  6286  xpopth  6292  eqop  6293  op1steq  6295  2nd1st  6296  2ndrn  6299  dfoprab3  6307  elopabi  6311  mpofvex  6321  dfmpo  6339  cnvf1olem  6340  cnvoprab  6350  f1od2  6351  xpmapenlem  6978  cc2lem  7420  cnref1o  9814  fsumcnv  11914  fprodcnv  12102  qredeu  12585  qdenval  12674  xpsff1o  13348  txbas  14897  txdis  14916  iedgvalg  15783  iedgex  15785  edgvalg  15825
  Copyright terms: Public domain W3C validator