ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg GIF version

Theorem 2ndexg 6261
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg (𝐴𝑉 → (2nd𝐴) ∈ V)

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2784 . 2 (𝐴𝑉𝐴 ∈ V)
2 fo2nd 6251 . . . 4 2nd :V–onto→V
3 fofn 5507 . . . 4 (2nd :V–onto→V → 2nd Fn V)
42, 3ax-mp 5 . . 3 2nd Fn V
5 funfvex 5600 . . . 4 ((Fun 2nd𝐴 ∈ dom 2nd ) → (2nd𝐴) ∈ V)
65funfni 5381 . . 3 ((2nd Fn V ∧ 𝐴 ∈ V) → (2nd𝐴) ∈ V)
74, 6mpan 424 . 2 (𝐴 ∈ V → (2nd𝐴) ∈ V)
81, 7syl 14 1 (𝐴𝑉 → (2nd𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Vcvv 2773   Fn wfn 5271  ontowfo 5274  cfv 5276  2nd c2nd 6232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284  df-2nd 6234
This theorem is referenced by:  elxp7  6263  xpopth  6269  eqop  6270  op1steq  6272  2nd1st  6273  2ndrn  6276  dfoprab3  6284  elopabi  6288  mpofvex  6298  dfmpo  6316  cnvf1olem  6317  cnvoprab  6327  f1od2  6328  xpmapenlem  6953  cc2lem  7385  cnref1o  9779  fsumcnv  11792  fprodcnv  11980  qredeu  12463  qdenval  12552  xpsff1o  13225  txbas  14774  txdis  14793  iedgvalg  15660  iedgex  15662  edgvalg  15700
  Copyright terms: Public domain W3C validator