Step | Hyp | Ref
| Expression |
1 | | df-nr 7668 |
. 2
⊢
R = ((P × P) /
~R ) |
2 | | oveq1 5849 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) =
(𝐴
·R [〈𝑢, 𝑣〉] ~R
)) |
3 | 2 | breq1d 3992 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) ↔
(𝐴
·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R
))) |
4 | | breq1 3985 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
𝐴
<R [〈𝑧, 𝑤〉] ~R
)) |
5 | | breq2 3986 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑥, 𝑦〉] ~R ↔
[〈𝑧, 𝑤〉]
~R <R 𝐴)) |
6 | 4, 5 | orbi12d 783 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) ↔
(𝐴
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴))) |
7 | 3, 6 | imbi12d 233 |
. 2
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ((([〈𝑥, 𝑦〉] ~R
·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R )) ↔
((𝐴
·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) →
(𝐴
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴)))) |
8 | | oveq1 5849 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) =
(𝐵
·R [〈𝑢, 𝑣〉] ~R
)) |
9 | 8 | breq2d 3994 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((𝐴 ·R
[〈𝑢, 𝑣〉]
~R ) <R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) ↔
(𝐴
·R [〈𝑢, 𝑣〉] ~R )
<R (𝐵 ·R
[〈𝑢, 𝑣〉]
~R ))) |
10 | | breq2 3986 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐴 <R [〈𝑧, 𝑤〉] ~R ↔
𝐴
<R 𝐵)) |
11 | | breq1 3985 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ([〈𝑧, 𝑤〉] ~R
<R 𝐴 ↔ 𝐵 <R 𝐴)) |
12 | 10, 11 | orbi12d 783 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((𝐴 <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴) ↔ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) |
13 | 9, 12 | imbi12d 233 |
. 2
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (((𝐴 ·R
[〈𝑢, 𝑣〉]
~R ) <R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) →
(𝐴
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴)) ↔ ((𝐴 ·R
[〈𝑢, 𝑣〉]
~R ) <R (𝐵 ·R
[〈𝑢, 𝑣〉]
~R ) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)))) |
14 | | oveq2 5850 |
. . . 4
⊢
([〈𝑢, 𝑣〉]
~R = 𝐶 → (𝐴 ·R
[〈𝑢, 𝑣〉]
~R ) = (𝐴 ·R 𝐶)) |
15 | | oveq2 5850 |
. . . 4
⊢
([〈𝑢, 𝑣〉]
~R = 𝐶 → (𝐵 ·R
[〈𝑢, 𝑣〉]
~R ) = (𝐵 ·R 𝐶)) |
16 | 14, 15 | breq12d 3995 |
. . 3
⊢
([〈𝑢, 𝑣〉]
~R = 𝐶 → ((𝐴 ·R
[〈𝑢, 𝑣〉]
~R ) <R (𝐵 ·R
[〈𝑢, 𝑣〉]
~R ) ↔ (𝐴 ·R 𝐶) <R
(𝐵
·R 𝐶))) |
17 | 16 | imbi1d 230 |
. 2
⊢
([〈𝑢, 𝑣〉]
~R = 𝐶 → (((𝐴 ·R
[〈𝑢, 𝑣〉]
~R ) <R (𝐵 ·R
[〈𝑢, 𝑣〉]
~R ) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)) ↔ ((𝐴 ·R 𝐶) <R
(𝐵
·R 𝐶) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)))) |
18 | | mulextsr1lem 7721 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
((((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) +P ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)))<P (((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) +P ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣))) → ((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)))) |
19 | | mulsrpr 7687 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑢 ∈
P ∧ 𝑣
∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) =
[〈((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)), ((𝑥 ·P 𝑣) +P
(𝑦
·P 𝑢))〉] ~R
) |
20 | 19 | 3adant2 1006 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
([〈𝑥, 𝑦〉]
~R ·R [〈𝑢, 𝑣〉] ~R ) =
[〈((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)), ((𝑥 ·P 𝑣) +P
(𝑦
·P 𝑢))〉] ~R
) |
21 | | mulsrpr 7687 |
. . . . . 6
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑢 ∈
P ∧ 𝑣
∈ P)) → ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) =
[〈((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)), ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))〉] ~R
) |
22 | 21 | 3adant1 1005 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
([〈𝑧, 𝑤〉]
~R ·R [〈𝑢, 𝑣〉] ~R ) =
[〈((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)), ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))〉] ~R
) |
23 | 20, 22 | breq12d 3995 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(([〈𝑥, 𝑦〉]
~R ·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) ↔
[〈((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)), ((𝑥 ·P 𝑣) +P
(𝑦
·P 𝑢))〉] ~R
<R [〈((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)), ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))〉] ~R
)) |
24 | | simp1l 1011 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
𝑥 ∈
P) |
25 | | simp3l 1015 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
𝑢 ∈
P) |
26 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑢 ∈ P)
→ (𝑥
·P 𝑢) ∈ P) |
27 | 24, 25, 26 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑥
·P 𝑢) ∈ P) |
28 | | simp1r 1012 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
𝑦 ∈
P) |
29 | | simp3r 1016 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
𝑣 ∈
P) |
30 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑦 ∈ P ∧
𝑣 ∈ P)
→ (𝑦
·P 𝑣) ∈ P) |
31 | 28, 29, 30 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑦
·P 𝑣) ∈ P) |
32 | | addclpr 7478 |
. . . . . 6
⊢ (((𝑥
·P 𝑢) ∈ P ∧ (𝑦
·P 𝑣) ∈ P) → ((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) ∈ P) |
33 | 27, 31, 32 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) ∈ P) |
34 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑣 ∈ P)
→ (𝑥
·P 𝑣) ∈ P) |
35 | 24, 29, 34 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑥
·P 𝑣) ∈ P) |
36 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑦 ∈ P ∧
𝑢 ∈ P)
→ (𝑦
·P 𝑢) ∈ P) |
37 | 28, 25, 36 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑦
·P 𝑢) ∈ P) |
38 | | addclpr 7478 |
. . . . . 6
⊢ (((𝑥
·P 𝑣) ∈ P ∧ (𝑦
·P 𝑢) ∈ P) → ((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) ∈ P) |
39 | 35, 37, 38 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) ∈ P) |
40 | | simp2l 1013 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
𝑧 ∈
P) |
41 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑧 ∈ P ∧
𝑢 ∈ P)
→ (𝑧
·P 𝑢) ∈ P) |
42 | 40, 25, 41 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑧
·P 𝑢) ∈ P) |
43 | | simp2r 1014 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
𝑤 ∈
P) |
44 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P)
→ (𝑤
·P 𝑣) ∈ P) |
45 | 43, 29, 44 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑤
·P 𝑣) ∈ P) |
46 | | addclpr 7478 |
. . . . . 6
⊢ (((𝑧
·P 𝑢) ∈ P ∧ (𝑤
·P 𝑣) ∈ P) → ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)) ∈ P) |
47 | 42, 45, 46 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)) ∈ P) |
48 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑧 ∈ P ∧
𝑣 ∈ P)
→ (𝑧
·P 𝑣) ∈ P) |
49 | 40, 29, 48 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑧
·P 𝑣) ∈ P) |
50 | | mulclpr 7513 |
. . . . . . 7
⊢ ((𝑤 ∈ P ∧
𝑢 ∈ P)
→ (𝑤
·P 𝑢) ∈ P) |
51 | 43, 25, 50 | syl2anc 409 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(𝑤
·P 𝑢) ∈ P) |
52 | | addclpr 7478 |
. . . . . 6
⊢ (((𝑧
·P 𝑣) ∈ P ∧ (𝑤
·P 𝑢) ∈ P) → ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)) ∈ P) |
53 | 49, 51, 52 | syl2anc 409 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)) ∈ P) |
54 | | ltsrprg 7688 |
. . . . 5
⊢
(((((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) ∈ P ∧ ((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) ∈ P) ∧ (((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)) ∈ P ∧ ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)) ∈ P)) →
([〈((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)), ((𝑥 ·P 𝑣) +P
(𝑦
·P 𝑢))〉] ~R
<R [〈((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)), ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))〉] ~R ↔
(((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) +P ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)))<P (((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) +P ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣))))) |
55 | 33, 39, 47, 53, 54 | syl22anc 1229 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
([〈((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)), ((𝑥 ·P 𝑣) +P
(𝑦
·P 𝑢))〉] ~R
<R [〈((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)), ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))〉] ~R ↔
(((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) +P ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)))<P (((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) +P ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣))))) |
56 | 23, 55 | bitrd 187 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(([〈𝑥, 𝑦〉]
~R ·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) ↔
(((𝑥
·P 𝑢) +P (𝑦
·P 𝑣)) +P ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)))<P (((𝑥
·P 𝑣) +P (𝑦
·P 𝑢)) +P ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣))))) |
57 | | ltsrprg 7688 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) |
58 | 57 | 3adant3 1007 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) |
59 | | ltsrprg 7688 |
. . . . . 6
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑥, 𝑦〉] ~R ↔
(𝑧
+P 𝑦)<P (𝑤 +P
𝑥))) |
60 | 59 | ancoms 266 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑥, 𝑦〉] ~R ↔
(𝑧
+P 𝑦)<P (𝑤 +P
𝑥))) |
61 | 60 | 3adant3 1007 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
([〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ↔
(𝑧
+P 𝑦)<P (𝑤 +P
𝑥))) |
62 | 58, 61 | orbi12d 783 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) ↔
((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)))) |
63 | 18, 56, 62 | 3imtr4d 202 |
. 2
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝑢 ∈ P ∧ 𝑣 ∈ P)) →
(([〈𝑥, 𝑦〉]
~R ·R [〈𝑢, 𝑣〉] ~R )
<R ([〈𝑧, 𝑤〉] ~R
·R [〈𝑢, 𝑣〉] ~R ) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R
))) |
64 | 1, 7, 13, 17, 63 | 3ecoptocl 6590 |
1
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R
∧ 𝐶 ∈
R) → ((𝐴
·R 𝐶) <R (𝐵
·R 𝐶) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) |