ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 GIF version

Theorem mulextsr1 7865
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))

Proof of Theorem mulextsr1
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7811 . 2 R = ((P × P) / ~R )
2 oveq1 5932 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ))
32breq1d 4044 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R )))
4 breq1 4037 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
5 breq2 4038 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
64, 5orbi12d 794 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
73, 6imbi12d 234 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))))
8 oveq1 5932 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ))
98breq2d 4046 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R )))
10 breq2 4038 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 breq1 4037 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
1210, 11orbi12d 794 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
139, 12imbi12d 234 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
14 oveq2 5933 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R 𝐶))
15 oveq2 5933 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R 𝐶))
1614, 15breq12d 4047 . . 3 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶)))
1716imbi1d 231 . 2 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴)) ↔ ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
18 mulextsr1lem 7864 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
19 mulsrpr 7830 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
20193adant2 1018 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
21 mulsrpr 7830 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
22213adant1 1017 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
2320, 22breq12d 4047 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ))
24 simp1l 1023 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑥P)
25 simp3l 1027 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑢P)
26 mulclpr 7656 . . . . . . 7 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
2724, 25, 26syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑢) ∈ P)
28 simp1r 1024 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑦P)
29 simp3r 1028 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑣P)
30 mulclpr 7656 . . . . . . 7 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3128, 29, 30syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑣) ∈ P)
32 addclpr 7621 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3327, 31, 32syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
34 mulclpr 7656 . . . . . . 7 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
3524, 29, 34syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑣) ∈ P)
36 mulclpr 7656 . . . . . . 7 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
3728, 25, 36syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑢) ∈ P)
38 addclpr 7621 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3935, 37, 38syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
40 simp2l 1025 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑧P)
41 mulclpr 7656 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
4240, 25, 41syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑢) ∈ P)
43 simp2r 1026 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑤P)
44 mulclpr 7656 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
4543, 29, 44syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑣) ∈ P)
46 addclpr 7621 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
4742, 45, 46syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
48 mulclpr 7656 . . . . . . 7 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
4940, 29, 48syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑣) ∈ P)
50 mulclpr 7656 . . . . . . 7 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
5143, 25, 50syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑢) ∈ P)
52 addclpr 7621 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
5349, 51, 52syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
54 ltsrprg 7831 . . . . 5 (((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P ∧ ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P) ∧ (((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P ∧ ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5533, 39, 47, 53, 54syl22anc 1250 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5623, 55bitrd 188 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
57 ltsrprg 7831 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
58573adant3 1019 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
59 ltsrprg 7831 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6059ancoms 268 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
61603adant3 1019 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6258, 61orbi12d 794 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
6318, 56, 623imtr4d 203 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
641, 7, 13, 17, 633ecoptocl 6692 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  cop 3626   class class class wbr 4034  (class class class)co 5925  [cec 6599  Pcnp 7375   +P cpp 7377   ·P cmp 7378  <P cltp 7379   ~R cer 7380  Rcnr 7381   ·R cmr 7386   <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-iltp 7554  df-enr 7810  df-nr 7811  df-mr 7813  df-ltr 7814
This theorem is referenced by:  axpre-mulext  7972
  Copyright terms: Public domain W3C validator