ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 GIF version

Theorem mulextsr1 7901
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))

Proof of Theorem mulextsr1
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7847 . 2 R = ((P × P) / ~R )
2 oveq1 5958 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ))
32breq1d 4057 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R )))
4 breq1 4050 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
5 breq2 4051 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
64, 5orbi12d 795 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
73, 6imbi12d 234 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))))
8 oveq1 5958 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ))
98breq2d 4059 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R )))
10 breq2 4051 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 breq1 4050 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
1210, 11orbi12d 795 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
139, 12imbi12d 234 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
14 oveq2 5959 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R 𝐶))
15 oveq2 5959 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R 𝐶))
1614, 15breq12d 4060 . . 3 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶)))
1716imbi1d 231 . 2 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴)) ↔ ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
18 mulextsr1lem 7900 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
19 mulsrpr 7866 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
20193adant2 1019 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
21 mulsrpr 7866 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
22213adant1 1018 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
2320, 22breq12d 4060 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ))
24 simp1l 1024 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑥P)
25 simp3l 1028 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑢P)
26 mulclpr 7692 . . . . . . 7 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
2724, 25, 26syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑢) ∈ P)
28 simp1r 1025 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑦P)
29 simp3r 1029 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑣P)
30 mulclpr 7692 . . . . . . 7 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3128, 29, 30syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑣) ∈ P)
32 addclpr 7657 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3327, 31, 32syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
34 mulclpr 7692 . . . . . . 7 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
3524, 29, 34syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑣) ∈ P)
36 mulclpr 7692 . . . . . . 7 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
3728, 25, 36syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑢) ∈ P)
38 addclpr 7657 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3935, 37, 38syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
40 simp2l 1026 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑧P)
41 mulclpr 7692 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
4240, 25, 41syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑢) ∈ P)
43 simp2r 1027 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑤P)
44 mulclpr 7692 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
4543, 29, 44syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑣) ∈ P)
46 addclpr 7657 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
4742, 45, 46syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
48 mulclpr 7692 . . . . . . 7 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
4940, 29, 48syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑣) ∈ P)
50 mulclpr 7692 . . . . . . 7 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
5143, 25, 50syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑢) ∈ P)
52 addclpr 7657 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
5349, 51, 52syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
54 ltsrprg 7867 . . . . 5 (((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P ∧ ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P) ∧ (((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P ∧ ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5533, 39, 47, 53, 54syl22anc 1251 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5623, 55bitrd 188 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
57 ltsrprg 7867 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
58573adant3 1020 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
59 ltsrprg 7867 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6059ancoms 268 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
61603adant3 1020 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6258, 61orbi12d 795 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
6318, 56, 623imtr4d 203 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
641, 7, 13, 17, 633ecoptocl 6718 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  cop 3637   class class class wbr 4047  (class class class)co 5951  [cec 6625  Pcnp 7411   +P cpp 7413   ·P cmp 7414  <P cltp 7415   ~R cer 7416  Rcnr 7417   ·R cmr 7422   <R cltr 7423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-i1p 7587  df-iplp 7588  df-imp 7589  df-iltp 7590  df-enr 7846  df-nr 7847  df-mr 7849  df-ltr 7850
This theorem is referenced by:  axpre-mulext  8008
  Copyright terms: Public domain W3C validator