ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 GIF version

Theorem mulextsr1 7684
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))

Proof of Theorem mulextsr1
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7630 . 2 R = ((P × P) / ~R )
2 oveq1 5825 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ))
32breq1d 3975 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R )))
4 breq1 3968 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
5 breq2 3969 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
64, 5orbi12d 783 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
73, 6imbi12d 233 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))))
8 oveq1 5825 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ))
98breq2d 3977 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R )))
10 breq2 3969 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 breq1 3968 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
1210, 11orbi12d 783 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
139, 12imbi12d 233 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
14 oveq2 5826 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R 𝐶))
15 oveq2 5826 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R 𝐶))
1614, 15breq12d 3978 . . 3 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶)))
1716imbi1d 230 . 2 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴)) ↔ ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
18 mulextsr1lem 7683 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
19 mulsrpr 7649 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
20193adant2 1001 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
21 mulsrpr 7649 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
22213adant1 1000 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
2320, 22breq12d 3978 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ))
24 simp1l 1006 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑥P)
25 simp3l 1010 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑢P)
26 mulclpr 7475 . . . . . . 7 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
2724, 25, 26syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑢) ∈ P)
28 simp1r 1007 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑦P)
29 simp3r 1011 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑣P)
30 mulclpr 7475 . . . . . . 7 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3128, 29, 30syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑣) ∈ P)
32 addclpr 7440 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3327, 31, 32syl2anc 409 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
34 mulclpr 7475 . . . . . . 7 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
3524, 29, 34syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑣) ∈ P)
36 mulclpr 7475 . . . . . . 7 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
3728, 25, 36syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑢) ∈ P)
38 addclpr 7440 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3935, 37, 38syl2anc 409 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
40 simp2l 1008 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑧P)
41 mulclpr 7475 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
4240, 25, 41syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑢) ∈ P)
43 simp2r 1009 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑤P)
44 mulclpr 7475 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
4543, 29, 44syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑣) ∈ P)
46 addclpr 7440 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
4742, 45, 46syl2anc 409 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
48 mulclpr 7475 . . . . . . 7 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
4940, 29, 48syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑣) ∈ P)
50 mulclpr 7475 . . . . . . 7 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
5143, 25, 50syl2anc 409 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑢) ∈ P)
52 addclpr 7440 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
5349, 51, 52syl2anc 409 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
54 ltsrprg 7650 . . . . 5 (((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P ∧ ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P) ∧ (((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P ∧ ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5533, 39, 47, 53, 54syl22anc 1221 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5623, 55bitrd 187 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
57 ltsrprg 7650 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
58573adant3 1002 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
59 ltsrprg 7650 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6059ancoms 266 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
61603adant3 1002 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6258, 61orbi12d 783 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
6318, 56, 623imtr4d 202 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
641, 7, 13, 17, 633ecoptocl 6562 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1335  wcel 2128  cop 3563   class class class wbr 3965  (class class class)co 5818  [cec 6471  Pcnp 7194   +P cpp 7196   ·P cmp 7197  <P cltp 7198   ~R cer 7199  Rcnr 7200   ·R cmr 7205   <R cltr 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-1o 6357  df-2o 6358  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-pli 7208  df-mi 7209  df-lti 7210  df-plpq 7247  df-mpq 7248  df-enq 7250  df-nqqs 7251  df-plqqs 7252  df-mqqs 7253  df-1nqqs 7254  df-rq 7255  df-ltnqqs 7256  df-enq0 7327  df-nq0 7328  df-0nq0 7329  df-plq0 7330  df-mq0 7331  df-inp 7369  df-i1p 7370  df-iplp 7371  df-imp 7372  df-iltp 7373  df-enr 7629  df-nr 7630  df-mr 7632  df-ltr 7633
This theorem is referenced by:  axpre-mulext  7791
  Copyright terms: Public domain W3C validator