ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 GIF version

Theorem mulextsr1 7936
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))

Proof of Theorem mulextsr1
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7882 . 2 R = ((P × P) / ~R )
2 oveq1 5981 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ))
32breq1d 4072 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R )))
4 breq1 4065 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
5 breq2 4066 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
64, 5orbi12d 797 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
73, 6imbi12d 234 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))))
8 oveq1 5981 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ))
98breq2d 4074 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R )))
10 breq2 4066 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 breq1 4065 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
1210, 11orbi12d 797 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
139, 12imbi12d 234 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)) ↔ ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
14 oveq2 5982 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐴 ·R 𝐶))
15 oveq2 5982 . . . 4 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) = (𝐵 ·R 𝐶))
1614, 15breq12d 4075 . . 3 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → ((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶)))
1716imbi1d 231 . 2 ([⟨𝑢, 𝑣⟩] ~R = 𝐶 → (((𝐴 ·R [⟨𝑢, 𝑣⟩] ~R ) <R (𝐵 ·R [⟨𝑢, 𝑣⟩] ~R ) → (𝐴 <R 𝐵𝐵 <R 𝐴)) ↔ ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴))))
18 mulextsr1lem 7935 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
19 mulsrpr 7901 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
20193adant2 1021 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R )
21 mulsrpr 7901 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
22213adant1 1020 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) = [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R )
2320, 22breq12d 4075 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ [⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ))
24 simp1l 1026 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑥P)
25 simp3l 1030 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑢P)
26 mulclpr 7727 . . . . . . 7 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
2724, 25, 26syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑢) ∈ P)
28 simp1r 1027 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑦P)
29 simp3r 1031 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑣P)
30 mulclpr 7727 . . . . . . 7 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3128, 29, 30syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑣) ∈ P)
32 addclpr 7692 . . . . . 6 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3327, 31, 32syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
34 mulclpr 7727 . . . . . . 7 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
3524, 29, 34syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑥 ·P 𝑣) ∈ P)
36 mulclpr 7727 . . . . . . 7 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
3728, 25, 36syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑦 ·P 𝑢) ∈ P)
38 addclpr 7692 . . . . . 6 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3935, 37, 38syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
40 simp2l 1028 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑧P)
41 mulclpr 7727 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
4240, 25, 41syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑢) ∈ P)
43 simp2r 1029 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → 𝑤P)
44 mulclpr 7727 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
4543, 29, 44syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑣) ∈ P)
46 addclpr 7692 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
4742, 45, 46syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
48 mulclpr 7727 . . . . . . 7 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
4940, 29, 48syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑧 ·P 𝑣) ∈ P)
50 mulclpr 7727 . . . . . . 7 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
5143, 25, 50syl2anc 411 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (𝑤 ·P 𝑢) ∈ P)
52 addclpr 7692 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
5349, 51, 52syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
54 ltsrprg 7902 . . . . 5 (((((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P ∧ ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P) ∧ (((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P ∧ ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5533, 39, 47, 53, 54syl22anc 1253 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)), ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))⟩] ~R <R [⟨((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)), ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))⟩] ~R ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
5623, 55bitrd 188 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) ↔ (((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) +P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)))<P (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) +P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))))
57 ltsrprg 7902 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
58573adant3 1022 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
59 ltsrprg 7902 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6059ancoms 268 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
61603adant3 1022 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
6258, 61orbi12d 797 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
6318, 56, 623imtr4d 203 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑢P𝑣P)) → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) <R ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑢, 𝑣⟩] ~R ) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
641, 7, 13, 17, 633ecoptocl 6741 1 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  w3a 983   = wceq 1375  wcel 2180  cop 3649   class class class wbr 4062  (class class class)co 5974  [cec 6648  Pcnp 7446   +P cpp 7448   ·P cmp 7449  <P cltp 7450   ~R cer 7451  Rcnr 7452   ·R cmr 7457   <R cltr 7458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-i1p 7622  df-iplp 7623  df-imp 7624  df-iltp 7625  df-enr 7881  df-nr 7882  df-mr 7884  df-ltr 7885
This theorem is referenced by:  axpre-mulext  8043
  Copyright terms: Public domain W3C validator