| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1std | GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1std | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5561 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = (1st ‘〈𝐴, 𝐵〉)) | |
| 2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | op1st 6213 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
| 5 | 1, 4 | eqtrdi 2245 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ‘cfv 5259 1st c1st 6205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fv 5267 df-1st 6207 |
| This theorem is referenced by: xp1st 6232 sbcopeq1a 6254 csbopeq1a 6255 eloprabi 6263 mpomptsx 6264 dmmpossx 6266 fmpox 6267 fmpoco 6283 df1st2 6286 xporderlem 6298 xpf1o 6914 fisumcom2 11620 fprodcom2fi 11808 txbas 14578 cnmpt1st 14608 txhmeo 14639 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |