| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndd | GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5583 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
| 2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | op2nd 6240 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
| 5 | 1, 4 | eqtrdi 2255 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 〈cop 3637 ‘cfv 5276 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fv 5284 df-2nd 6234 |
| This theorem is referenced by: xp2nd 6259 sbcopeq1a 6280 csbopeq1a 6281 eloprabi 6289 mpomptsx 6290 dmmpossx 6292 fmpox 6293 fmpoco 6309 df2nd2 6313 xporderlem 6324 xpf1o 6948 frecuzrdgtcl 10564 frecuzrdgfunlem 10571 fisumcom2 11793 fprodcom2fi 11981 txbas 14774 cnmpt2nd 14805 txhmeo 14835 |
| Copyright terms: Public domain | W3C validator |