ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndd GIF version

Theorem op2ndd 6152
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op2ndd (𝐶 = ⟨𝐴, 𝐵⟩ → (2nd𝐶) = 𝐵)

Proof of Theorem op2ndd
StepHypRef Expression
1 fveq2 5517 . 2 (𝐶 = ⟨𝐴, 𝐵⟩ → (2nd𝐶) = (2nd ‘⟨𝐴, 𝐵⟩))
2 op1st.1 . . 3 𝐴 ∈ V
3 op1st.2 . . 3 𝐵 ∈ V
42, 3op2nd 6150 . 2 (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
51, 4eqtrdi 2226 1 (𝐶 = ⟨𝐴, 𝐵⟩ → (2nd𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2739  cop 3597  cfv 5218  2nd c2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-2nd 6144
This theorem is referenced by:  xp2nd  6169  sbcopeq1a  6190  csbopeq1a  6191  eloprabi  6199  mpomptsx  6200  dmmpossx  6202  fmpox  6203  fmpoco  6219  df2nd2  6223  xporderlem  6234  xpf1o  6846  frecuzrdgtcl  10414  frecuzrdgfunlem  10421  fisumcom2  11448  fprodcom2fi  11636  txbas  13797  cnmpt2nd  13828  txhmeo  13858
  Copyright terms: Public domain W3C validator