![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op2ndd | GIF version |
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5318 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nd 5932 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
5 | 1, 4 | syl6eq 2137 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 Vcvv 2620 〈cop 3453 ‘cfv 5028 2nd c2nd 5924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-iota 4993 df-fun 5030 df-fv 5036 df-2nd 5926 |
This theorem is referenced by: xp2nd 5951 sbcopeq1a 5971 csbopeq1a 5972 eloprabi 5980 mpt2mptsx 5981 dmmpt2ssx 5983 fmpt2x 5984 fmpt2co 5995 df2nd2 5999 xporderlem 6010 xpf1o 6614 frecuzrdgtcl 9880 frecuzrdgfunlem 9887 fisumcom2 10893 |
Copyright terms: Public domain | W3C validator |