| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihashen1 | GIF version | ||
| Description: A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihashen1 | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4176 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | hashsng 10956 | . . . . . 6 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (♯‘{∅}) = 1 |
| 4 | 3 | eqcomi 2210 | . . . 4 ⊢ 1 = (♯‘{∅}) |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝐴 ∈ Fin → 1 = (♯‘{∅})) |
| 6 | 5 | eqeq2d 2218 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅}))) |
| 7 | snfig 6917 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
| 8 | 1, 7 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
| 9 | hashen 10942 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) | |
| 10 | 8, 9 | mpan2 425 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) |
| 11 | df1o2 6525 | . . . . 5 ⊢ 1o = {∅} | |
| 12 | 11 | eqcomi 2210 | . . . 4 ⊢ {∅} = 1o |
| 13 | 12 | breq2i 4056 | . . 3 ⊢ (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o) |
| 14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)) |
| 15 | 6, 10, 14 | 3bitrd 214 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3462 {csn 3635 class class class wbr 4048 ‘cfv 5277 1oc1o 6505 ≈ cen 6835 Fincfn 6837 1c1 7939 ♯chash 10933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-recs 6401 df-frec 6487 df-1o 6512 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-n0 9309 df-z 9386 df-uz 9662 df-fz 10144 df-ihash 10934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |