| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihashen1 | GIF version | ||
| Description: A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihashen1 | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4160 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | hashsng 10890 | . . . . . 6 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (♯‘{∅}) = 1 |
| 4 | 3 | eqcomi 2200 | . . . 4 ⊢ 1 = (♯‘{∅}) |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝐴 ∈ Fin → 1 = (♯‘{∅})) |
| 6 | 5 | eqeq2d 2208 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅}))) |
| 7 | snfig 6873 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
| 8 | 1, 7 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
| 9 | hashen 10876 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) | |
| 10 | 8, 9 | mpan2 425 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) |
| 11 | df1o2 6487 | . . . . 5 ⊢ 1o = {∅} | |
| 12 | 11 | eqcomi 2200 | . . . 4 ⊢ {∅} = 1o |
| 13 | 12 | breq2i 4041 | . . 3 ⊢ (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o) |
| 14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)) |
| 15 | 6, 10, 14 | 3bitrd 214 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3450 {csn 3622 class class class wbr 4033 ‘cfv 5258 1oc1o 6467 ≈ cen 6797 Fincfn 6799 1c1 7880 ♯chash 10867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-ihash 10868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |