ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashen1 GIF version

Theorem fihashen1 10721
Description: A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
Assertion
Ref Expression
fihashen1 (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))

Proof of Theorem fihashen1
StepHypRef Expression
1 0ex 4114 . . . . . 6 ∅ ∈ V
2 hashsng 10720 . . . . . 6 (∅ ∈ V → (♯‘{∅}) = 1)
31, 2ax-mp 5 . . . . 5 (♯‘{∅}) = 1
43eqcomi 2174 . . . 4 1 = (♯‘{∅})
54a1i 9 . . 3 (𝐴 ∈ Fin → 1 = (♯‘{∅}))
65eqeq2d 2182 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅})))
7 snfig 6788 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
81, 7ax-mp 5 . . 3 {∅} ∈ Fin
9 hashen 10705 . . 3 ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
108, 9mpan2 423 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
11 df1o2 6405 . . . . 5 1o = {∅}
1211eqcomi 2174 . . . 4 {∅} = 1o
1312breq2i 3995 . . 3 (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)
1413a1i 9 . 2 (𝐴 ∈ Fin → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o))
156, 10, 143bitrd 213 1 (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  c0 3414  {csn 3581   class class class wbr 3987  cfv 5196  1oc1o 6385  cen 6712  Fincfn 6714  1c1 7762  chash 10696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-recs 6281  df-frec 6367  df-1o 6392  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-ihash 10697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator