Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fihashen1 | GIF version |
Description: A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
Ref | Expression |
---|---|
fihashen1 | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | hashsng 10733 | . . . . . 6 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (♯‘{∅}) = 1 |
4 | 3 | eqcomi 2174 | . . . 4 ⊢ 1 = (♯‘{∅}) |
5 | 4 | a1i 9 | . . 3 ⊢ (𝐴 ∈ Fin → 1 = (♯‘{∅})) |
6 | 5 | eqeq2d 2182 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅}))) |
7 | snfig 6792 | . . . 4 ⊢ (∅ ∈ V → {∅} ∈ Fin) | |
8 | 1, 7 | ax-mp 5 | . . 3 ⊢ {∅} ∈ Fin |
9 | hashen 10718 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) | |
10 | 8, 9 | mpan2 423 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅})) |
11 | df1o2 6408 | . . . . 5 ⊢ 1o = {∅} | |
12 | 11 | eqcomi 2174 | . . . 4 ⊢ {∅} = 1o |
13 | 12 | breq2i 3997 | . . 3 ⊢ (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o) |
14 | 13 | a1i 9 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)) |
15 | 6, 10, 14 | 3bitrd 213 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 {csn 3583 class class class wbr 3989 ‘cfv 5198 1oc1o 6388 ≈ cen 6716 Fincfn 6718 1c1 7775 ♯chash 10709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-1o 6395 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-ihash 10710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |