ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashen1 GIF version

Theorem fihashen1 10811
Description: A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
Assertion
Ref Expression
fihashen1 (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))

Proof of Theorem fihashen1
StepHypRef Expression
1 0ex 4145 . . . . . 6 ∅ ∈ V
2 hashsng 10810 . . . . . 6 (∅ ∈ V → (♯‘{∅}) = 1)
31, 2ax-mp 5 . . . . 5 (♯‘{∅}) = 1
43eqcomi 2193 . . . 4 1 = (♯‘{∅})
54a1i 9 . . 3 (𝐴 ∈ Fin → 1 = (♯‘{∅}))
65eqeq2d 2201 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ (♯‘𝐴) = (♯‘{∅})))
7 snfig 6840 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
81, 7ax-mp 5 . . 3 {∅} ∈ Fin
9 hashen 10796 . . 3 ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
108, 9mpan2 425 . 2 (𝐴 ∈ Fin → ((♯‘𝐴) = (♯‘{∅}) ↔ 𝐴 ≈ {∅}))
11 df1o2 6454 . . . . 5 1o = {∅}
1211eqcomi 2193 . . . 4 {∅} = 1o
1312breq2i 4026 . . 3 (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o)
1413a1i 9 . 2 (𝐴 ∈ Fin → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1o))
156, 10, 143bitrd 214 1 (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2160  Vcvv 2752  c0 3437  {csn 3607   class class class wbr 4018  cfv 5235  1oc1o 6434  cen 6764  Fincfn 6766  1c1 7842  chash 10787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-recs 6330  df-frec 6416  df-1o 6441  df-er 6559  df-en 6767  df-dom 6768  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039  df-ihash 10788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator