| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4179 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | f1osn 5575 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 4 | 1, 2 | opex 4281 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
| 5 | 4 | snex 4237 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
| 6 | f1oeq1 5522 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 7 | 5, 6 | spcev 2872 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 9 | bren 6848 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
| 10 | 8, 9 | mpbir 146 | . 2 ⊢ {𝐴} ≈ {∅} |
| 11 | df1o2 6528 | . 2 ⊢ 1o = {∅} | |
| 12 | 10, 11 | breqtrri 4078 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ∅c0 3464 {csn 3638 〈cop 3641 class class class wbr 4051 –1-1-onto→wf1o 5279 1oc1o 6508 ≈ cen 6838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-1o 6515 df-en 6841 |
| This theorem is referenced by: ensn1g 6902 en1 6904 pm54.43 7313 1nprm 12511 en1top 14624 |
| Copyright terms: Public domain | W3C validator |