ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1 GIF version

Theorem ensn1 6873
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensn1.1 . . . . 5 𝐴 ∈ V
2 0ex 4170 . . . . 5 ∅ ∈ V
31, 2f1osn 5556 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
41, 2opex 4272 . . . . . 6 𝐴, ∅⟩ ∈ V
54snex 4228 . . . . 5 {⟨𝐴, ∅⟩} ∈ V
6 f1oeq1 5504 . . . . 5 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
75, 6spcev 2867 . . . 4 ({⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
83, 7ax-mp 5 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
9 bren 6824 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
108, 9mpbir 146 . 2 {𝐴} ≈ {∅}
11 df1o2 6505 . 2 1o = {∅}
1210, 11breqtrri 4070 1 {𝐴} ≈ 1o
Colors of variables: wff set class
Syntax hints:  wex 1514  wcel 2175  Vcvv 2771  c0 3459  {csn 3632  cop 3635   class class class wbr 4043  1-1-ontowf1o 5267  1oc1o 6485  cen 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-1o 6492  df-en 6818
This theorem is referenced by:  ensn1g  6874  en1  6876  pm54.43  7280  1nprm  12355  en1top  14467
  Copyright terms: Public domain W3C validator