![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 0ex 3987 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 1, 2 | f1osn 5328 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
4 | 1, 2 | opex 4080 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
5 | 4 | snex 4041 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
6 | f1oeq1 5279 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
7 | 5, 6 | spcev 2727 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
8 | 3, 7 | ax-mp 7 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
9 | bren 6544 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
10 | 8, 9 | mpbir 145 | . 2 ⊢ {𝐴} ≈ {∅} |
11 | df1o2 6232 | . 2 ⊢ 1o = {∅} | |
12 | 10, 11 | breqtrri 3892 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff set class |
Syntax hints: ∃wex 1433 ∈ wcel 1445 Vcvv 2633 ∅c0 3302 {csn 3466 〈cop 3469 class class class wbr 3867 –1-1-onto→wf1o 5048 1oc1o 6212 ≈ cen 6535 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-suc 4222 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-1o 6219 df-en 6538 |
This theorem is referenced by: ensn1g 6594 en1 6596 pm54.43 6915 1nprm 11523 en1top 11929 |
Copyright terms: Public domain | W3C validator |