| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4210 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | f1osn 5612 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 4 | 1, 2 | opex 4314 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
| 5 | 4 | snex 4268 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
| 6 | f1oeq1 5559 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 7 | 5, 6 | spcev 2898 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 9 | bren 6893 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
| 10 | 8, 9 | mpbir 146 | . 2 ⊢ {𝐴} ≈ {∅} |
| 11 | df1o2 6573 | . 2 ⊢ 1o = {∅} | |
| 12 | 10, 11 | breqtrri 4109 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 {csn 3666 〈cop 3669 class class class wbr 4082 –1-1-onto→wf1o 5316 1oc1o 6553 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-en 6886 |
| This theorem is referenced by: ensn1g 6947 en1 6949 pm54.43 7359 1nprm 12631 en1top 14745 umgredgnlp 15944 |
| Copyright terms: Public domain | W3C validator |