ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1 GIF version

Theorem ensn1 6855
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensn1.1 . . . . 5 𝐴 ∈ V
2 0ex 4160 . . . . 5 ∅ ∈ V
31, 2f1osn 5544 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
41, 2opex 4262 . . . . . 6 𝐴, ∅⟩ ∈ V
54snex 4218 . . . . 5 {⟨𝐴, ∅⟩} ∈ V
6 f1oeq1 5492 . . . . 5 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
75, 6spcev 2859 . . . 4 ({⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
83, 7ax-mp 5 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
9 bren 6806 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
108, 9mpbir 146 . 2 {𝐴} ≈ {∅}
11 df1o2 6487 . 2 1o = {∅}
1210, 11breqtrri 4060 1 {𝐴} ≈ 1o
Colors of variables: wff set class
Syntax hints:  wex 1506  wcel 2167  Vcvv 2763  c0 3450  {csn 3622  cop 3625   class class class wbr 4033  1-1-ontowf1o 5257  1oc1o 6467  cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-1o 6474  df-en 6800
This theorem is referenced by:  ensn1g  6856  en1  6858  pm54.43  7257  1nprm  12282  en1top  14313
  Copyright terms: Public domain W3C validator