| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4161 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | f1osn 5547 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 4 | 1, 2 | opex 4263 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
| 5 | 4 | snex 4219 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
| 6 | f1oeq1 5495 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 7 | 5, 6 | spcev 2859 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 9 | bren 6815 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
| 10 | 8, 9 | mpbir 146 | . 2 ⊢ {𝐴} ≈ {∅} |
| 11 | df1o2 6496 | . 2 ⊢ 1o = {∅} | |
| 12 | 10, 11 | breqtrri 4061 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ∅c0 3451 {csn 3623 〈cop 3626 class class class wbr 4034 –1-1-onto→wf1o 5258 1oc1o 6476 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-1o 6483 df-en 6809 |
| This theorem is referenced by: ensn1g 6865 en1 6867 pm54.43 7269 1nprm 12307 en1top 14397 |
| Copyright terms: Public domain | W3C validator |