Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 0ex 4116 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 1, 2 | f1osn 5482 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
4 | 1, 2 | opex 4214 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
5 | 4 | snex 4171 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
6 | f1oeq1 5431 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
7 | 5, 6 | spcev 2825 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
9 | bren 6725 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
10 | 8, 9 | mpbir 145 | . 2 ⊢ {𝐴} ≈ {∅} |
11 | df1o2 6408 | . 2 ⊢ 1o = {∅} | |
12 | 10, 11 | breqtrri 4016 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff set class |
Syntax hints: ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 {csn 3583 〈cop 3586 class class class wbr 3989 –1-1-onto→wf1o 5197 1oc1o 6388 ≈ cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-1o 6395 df-en 6719 |
This theorem is referenced by: ensn1g 6775 en1 6777 pm54.43 7167 1nprm 12068 en1top 12871 |
Copyright terms: Public domain | W3C validator |