Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 0ex 4109 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 1, 2 | f1osn 5472 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
4 | 1, 2 | opex 4207 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
5 | 4 | snex 4164 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
6 | f1oeq1 5421 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
7 | 5, 6 | spcev 2821 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
9 | bren 6713 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
10 | 8, 9 | mpbir 145 | . 2 ⊢ {𝐴} ≈ {∅} |
11 | df1o2 6397 | . 2 ⊢ 1o = {∅} | |
12 | 10, 11 | breqtrri 4009 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff set class |
Syntax hints: ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 {csn 3576 〈cop 3579 class class class wbr 3982 –1-1-onto→wf1o 5187 1oc1o 6377 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-1o 6384 df-en 6707 |
This theorem is referenced by: ensn1g 6763 en1 6765 pm54.43 7146 1nprm 12046 en1top 12717 |
Copyright terms: Public domain | W3C validator |