ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1 GIF version

Theorem ensn1 6946
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensn1.1 . . . . 5 𝐴 ∈ V
2 0ex 4210 . . . . 5 ∅ ∈ V
31, 2f1osn 5612 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
41, 2opex 4314 . . . . . 6 𝐴, ∅⟩ ∈ V
54snex 4268 . . . . 5 {⟨𝐴, ∅⟩} ∈ V
6 f1oeq1 5559 . . . . 5 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
75, 6spcev 2898 . . . 4 ({⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
83, 7ax-mp 5 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
9 bren 6893 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
108, 9mpbir 146 . 2 {𝐴} ≈ {∅}
11 df1o2 6573 . 2 1o = {∅}
1210, 11breqtrri 4109 1 {𝐴} ≈ 1o
Colors of variables: wff set class
Syntax hints:  wex 1538  wcel 2200  Vcvv 2799  c0 3491  {csn 3666  cop 3669   class class class wbr 4082  1-1-ontowf1o 5316  1oc1o 6553  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-1o 6560  df-en 6886
This theorem is referenced by:  ensn1g  6947  en1  6949  pm54.43  7359  1nprm  12631  en1top  14745  umgredgnlp  15944
  Copyright terms: Public domain W3C validator