![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 0ex 4157 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 1, 2 | f1osn 5541 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
4 | 1, 2 | opex 4259 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
5 | 4 | snex 4215 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
6 | f1oeq1 5489 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
7 | 5, 6 | spcev 2856 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
9 | bren 6803 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
10 | 8, 9 | mpbir 146 | . 2 ⊢ {𝐴} ≈ {∅} |
11 | df1o2 6484 | . 2 ⊢ 1o = {∅} | |
12 | 10, 11 | breqtrri 4057 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff set class |
Syntax hints: ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ∅c0 3447 {csn 3619 〈cop 3622 class class class wbr 4030 –1-1-onto→wf1o 5254 1oc1o 6464 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-1o 6471 df-en 6797 |
This theorem is referenced by: ensn1g 6853 en1 6855 pm54.43 7252 1nprm 12255 en1top 14256 |
Copyright terms: Public domain | W3C validator |