| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensn1 | GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4170 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | f1osn 5556 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 4 | 1, 2 | opex 4272 | . . . . . 6 ⊢ 〈𝐴, ∅〉 ∈ V |
| 5 | 4 | snex 4228 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V |
| 6 | f1oeq1 5504 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 7 | 5, 6 | spcev 2867 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 8 | 3, 7 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 9 | bren 6824 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
| 10 | 8, 9 | mpbir 146 | . 2 ⊢ {𝐴} ≈ {∅} |
| 11 | df1o2 6505 | . 2 ⊢ 1o = {∅} | |
| 12 | 10, 11 | breqtrri 4070 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1514 ∈ wcel 2175 Vcvv 2771 ∅c0 3459 {csn 3632 〈cop 3635 class class class wbr 4043 –1-1-onto→wf1o 5267 1oc1o 6485 ≈ cen 6815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-1o 6492 df-en 6818 |
| This theorem is referenced by: ensn1g 6874 en1 6876 pm54.43 7280 1nprm 12355 en1top 14467 |
| Copyright terms: Public domain | W3C validator |