ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdvdsb GIF version

Theorem negdvdsb 12313
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negdvdsb ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))

Proof of Theorem negdvdsb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 znegcl 9473 . . . 4 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
32anim1i 340 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 znegcl 9473 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
54adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
6 zcn 9447 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 9447 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 mul2neg 8540 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
96, 7, 8syl2anr 290 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
109adantlr 477 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
1110eqeq1d 2238 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · -𝑀) = 𝑁 ↔ (𝑥 · 𝑀) = 𝑁))
1211biimprd 158 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · -𝑀) = 𝑁))
131, 3, 5, 12dvds1lem 12308 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → -𝑀𝑁))
14 mulneg12 8539 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
156, 7, 14syl2anr 290 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
1615adantlr 477 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
1716eqeq1d 2238 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · 𝑀) = 𝑁 ↔ (𝑥 · -𝑀) = 𝑁))
1817biimprd 158 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · -𝑀) = 𝑁 → (-𝑥 · 𝑀) = 𝑁))
193, 1, 5, 18dvds1lem 12308 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀𝑁𝑀𝑁))
2013, 19impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cc 7993   · cmul 8000  -cneg 8314  cz 9442  cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-z 9443  df-dvds 12294
This theorem is referenced by:  absdvdsb  12315  zdvdsdc  12318  3dvds  12370  bezoutlemzz  12518  lcmneg  12591
  Copyright terms: Public domain W3C validator