| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp1st | GIF version | ||
| Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4680 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
| 2 | vex 2766 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 3 | vex 2766 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
| 4 | 2, 3 | op1std 6206 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (1st ‘𝐴) = 𝑏) |
| 5 | 4 | eleq1d 2265 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((1st ‘𝐴) ∈ 𝐵 ↔ 𝑏 ∈ 𝐵)) |
| 6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑏 ∈ 𝐵) → (1st ‘𝐴) ∈ 𝐵) |
| 7 | 6 | adantrr 479 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
| 8 | 7 | exlimivv 1911 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 〈cop 3625 × cxp 4661 ‘cfv 5258 1st c1st 6196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 |
| This theorem is referenced by: disjxp1 6294 xpf1o 6905 xpmapenlem 6910 opabfi 6999 djuf1olem 7119 eldju1st 7137 exmidapne 7327 dfplpq2 7421 dfmpq2 7422 enqbreq2 7424 enqdc1 7429 mulpipq2 7438 preqlu 7539 elnp1st2nd 7543 cauappcvgprlemladd 7725 elreal2 7897 cnref1o 9725 frecuzrdgrrn 10500 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgsuc 10506 frecuzrdgrclt 10507 frecuzrdgg 10508 frecuzrdgsuctlem 10515 seq3val 10552 seqvalcd 10553 fsum2dlemstep 11599 fisumcom2 11603 fprod2dlemstep 11787 fprodcom2fi 11791 eucalgval 12222 eucalginv 12224 eucalglt 12225 eucalg 12227 sqpweven 12343 2sqpwodd 12344 ctiunctlemudc 12654 xpsff1o 12992 tx2cn 14506 txdis 14513 txhmeo 14555 xmetxp 14743 xmetxpbl 14744 xmettxlem 14745 xmettx 14746 lgsquadlemofi 15317 lgsquadlem1 15318 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |