| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp1st | GIF version | ||
| Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4681 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
| 2 | vex 2766 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 3 | vex 2766 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
| 4 | 2, 3 | op1std 6215 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (1st ‘𝐴) = 𝑏) |
| 5 | 4 | eleq1d 2265 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((1st ‘𝐴) ∈ 𝐵 ↔ 𝑏 ∈ 𝐵)) |
| 6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑏 ∈ 𝐵) → (1st ‘𝐴) ∈ 𝐵) |
| 7 | 6 | adantrr 479 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
| 8 | 7 | exlimivv 1911 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 〈cop 3626 × cxp 4662 ‘cfv 5259 1st c1st 6205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fv 5267 df-1st 6207 |
| This theorem is referenced by: disjxp1 6303 xpf1o 6914 xpmapenlem 6919 opabfi 7008 djuf1olem 7128 eldju1st 7146 exmidapne 7345 dfplpq2 7440 dfmpq2 7441 enqbreq2 7443 enqdc1 7448 mulpipq2 7457 preqlu 7558 elnp1st2nd 7562 cauappcvgprlemladd 7744 elreal2 7916 cnref1o 9744 frecuzrdgrrn 10519 frec2uzrdg 10520 frecuzrdgrcl 10521 frecuzrdgsuc 10525 frecuzrdgrclt 10526 frecuzrdgg 10527 frecuzrdgsuctlem 10534 seq3val 10571 seqvalcd 10572 fsum2dlemstep 11618 fisumcom2 11622 fprod2dlemstep 11806 fprodcom2fi 11810 eucalgval 12249 eucalginv 12251 eucalglt 12252 eucalg 12254 sqpweven 12370 2sqpwodd 12371 ctiunctlemudc 12681 xpsff1o 13053 tx2cn 14592 txdis 14599 txhmeo 14641 xmetxp 14829 xmetxpbl 14830 xmettxlem 14831 xmettx 14832 lgsquadlemofi 15403 lgsquadlem1 15404 lgsquadlem2 15405 |
| Copyright terms: Public domain | W3C validator |