Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xp1st | GIF version |
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4637 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2738 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2738 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op1std 6139 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (1st ‘𝐴) = 𝑏) |
5 | 4 | eleq1d 2244 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((1st ‘𝐴) ∈ 𝐵 ↔ 𝑏 ∈ 𝐵)) |
6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑏 ∈ 𝐵) → (1st ‘𝐴) ∈ 𝐵) |
7 | 6 | adantrr 479 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
8 | 7 | exlimivv 1894 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1490 ∈ wcel 2146 〈cop 3592 × cxp 4618 ‘cfv 5208 1st c1st 6129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fv 5216 df-1st 6131 |
This theorem is referenced by: disjxp1 6227 xpf1o 6834 xpmapenlem 6839 djuf1olem 7042 eldju1st 7060 dfplpq2 7328 dfmpq2 7329 enqbreq2 7331 enqdc1 7336 mulpipq2 7345 preqlu 7446 elnp1st2nd 7450 cauappcvgprlemladd 7632 elreal2 7804 cnref1o 9623 frecuzrdgrrn 10378 frec2uzrdg 10379 frecuzrdgrcl 10380 frecuzrdgsuc 10384 frecuzrdgrclt 10385 frecuzrdgg 10386 frecuzrdgsuctlem 10393 seq3val 10428 seqvalcd 10429 fsum2dlemstep 11410 fisumcom2 11414 fprod2dlemstep 11598 fprodcom2fi 11602 eucalgval 12021 eucalginv 12023 eucalglt 12024 eucalg 12026 sqpweven 12142 2sqpwodd 12143 ctiunctlemudc 12405 tx2cn 13350 txdis 13357 txhmeo 13399 xmetxp 13587 xmetxpbl 13588 xmettxlem 13589 xmettx 13590 |
Copyright terms: Public domain | W3C validator |