| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp1st | GIF version | ||
| Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4736 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
| 2 | vex 2802 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 3 | vex 2802 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
| 4 | 2, 3 | op1std 6300 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (1st ‘𝐴) = 𝑏) |
| 5 | 4 | eleq1d 2298 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((1st ‘𝐴) ∈ 𝐵 ↔ 𝑏 ∈ 𝐵)) |
| 6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑏 ∈ 𝐵) → (1st ‘𝐴) ∈ 𝐵) |
| 7 | 6 | adantrr 479 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
| 8 | 7 | exlimivv 1943 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 〈cop 3669 × cxp 4717 ‘cfv 5318 1st c1st 6290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fv 5326 df-1st 6292 |
| This theorem is referenced by: disjxp1 6388 xpf1o 7013 xpmapenlem 7018 opabfi 7108 djuf1olem 7228 eldju1st 7246 exmidapne 7454 dfplpq2 7549 dfmpq2 7550 enqbreq2 7552 enqdc1 7557 mulpipq2 7566 preqlu 7667 elnp1st2nd 7671 cauappcvgprlemladd 7853 elreal2 8025 cnref1o 9854 frecuzrdgrrn 10638 frec2uzrdg 10639 frecuzrdgrcl 10640 frecuzrdgsuc 10644 frecuzrdgrclt 10645 frecuzrdgg 10646 frecuzrdgsuctlem 10653 seq3val 10690 seqvalcd 10691 fsum2dlemstep 11953 fisumcom2 11957 fprod2dlemstep 12141 fprodcom2fi 12145 eucalgval 12584 eucalginv 12586 eucalglt 12587 eucalg 12589 sqpweven 12705 2sqpwodd 12706 ctiunctlemudc 13016 xpsff1o 13390 tx2cn 14952 txdis 14959 txhmeo 15001 xmetxp 15189 xmetxpbl 15190 xmettxlem 15191 xmettx 15192 lgsquadlemofi 15763 lgsquadlem1 15764 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |