ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1st GIF version

Theorem xp1st 6317
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp1st (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)

Proof of Theorem xp1st
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4736 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)))
2 vex 2802 . . . . . . 7 𝑏 ∈ V
3 vex 2802 . . . . . . 7 𝑐 ∈ V
42, 3op1std 6300 . . . . . 6 (𝐴 = ⟨𝑏, 𝑐⟩ → (1st𝐴) = 𝑏)
54eleq1d 2298 . . . . 5 (𝐴 = ⟨𝑏, 𝑐⟩ → ((1st𝐴) ∈ 𝐵𝑏𝐵))
65biimpar 297 . . . 4 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑏𝐵) → (1st𝐴) ∈ 𝐵)
76adantrr 479 . . 3 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (1st𝐴) ∈ 𝐵)
87exlimivv 1943 . 2 (∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (1st𝐴) ∈ 𝐵)
91, 8sylbi 121 1 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  cop 3669   × cxp 4717  cfv 5318  1st c1st 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6292
This theorem is referenced by:  disjxp1  6388  xpf1o  7013  xpmapenlem  7018  opabfi  7108  djuf1olem  7228  eldju1st  7246  exmidapne  7454  dfplpq2  7549  dfmpq2  7550  enqbreq2  7552  enqdc1  7557  mulpipq2  7566  preqlu  7667  elnp1st2nd  7671  cauappcvgprlemladd  7853  elreal2  8025  cnref1o  9854  frecuzrdgrrn  10638  frec2uzrdg  10639  frecuzrdgrcl  10640  frecuzrdgsuc  10644  frecuzrdgrclt  10645  frecuzrdgg  10646  frecuzrdgsuctlem  10653  seq3val  10690  seqvalcd  10691  fsum2dlemstep  11953  fisumcom2  11957  fprod2dlemstep  12141  fprodcom2fi  12145  eucalgval  12584  eucalginv  12586  eucalglt  12587  eucalg  12589  sqpweven  12705  2sqpwodd  12706  ctiunctlemudc  13016  xpsff1o  13390  tx2cn  14952  txdis  14959  txhmeo  15001  xmetxp  15189  xmetxpbl  15190  xmettxlem  15191  xmettx  15192  lgsquadlemofi  15763  lgsquadlem1  15764  lgsquadlem2  15765
  Copyright terms: Public domain W3C validator