ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1st GIF version

Theorem xp1st 6133
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp1st (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)

Proof of Theorem xp1st
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4621 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)))
2 vex 2729 . . . . . . 7 𝑏 ∈ V
3 vex 2729 . . . . . . 7 𝑐 ∈ V
42, 3op1std 6116 . . . . . 6 (𝐴 = ⟨𝑏, 𝑐⟩ → (1st𝐴) = 𝑏)
54eleq1d 2235 . . . . 5 (𝐴 = ⟨𝑏, 𝑐⟩ → ((1st𝐴) ∈ 𝐵𝑏𝐵))
65biimpar 295 . . . 4 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑏𝐵) → (1st𝐴) ∈ 𝐵)
76adantrr 471 . . 3 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (1st𝐴) ∈ 𝐵)
87exlimivv 1884 . 2 (∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (1st𝐴) ∈ 𝐵)
91, 8sylbi 120 1 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  cop 3579   × cxp 4602  cfv 5188  1st c1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108
This theorem is referenced by:  disjxp1  6204  xpf1o  6810  xpmapenlem  6815  djuf1olem  7018  eldju1st  7036  dfplpq2  7295  dfmpq2  7296  enqbreq2  7298  enqdc1  7303  mulpipq2  7312  preqlu  7413  elnp1st2nd  7417  cauappcvgprlemladd  7599  elreal2  7771  cnref1o  9588  frecuzrdgrrn  10343  frec2uzrdg  10344  frecuzrdgrcl  10345  frecuzrdgsuc  10349  frecuzrdgrclt  10350  frecuzrdgg  10351  frecuzrdgsuctlem  10358  seq3val  10393  seqvalcd  10394  fsum2dlemstep  11375  fisumcom2  11379  fprod2dlemstep  11563  fprodcom2fi  11567  eucalgval  11986  eucalginv  11988  eucalglt  11989  eucalg  11991  sqpweven  12107  2sqpwodd  12108  ctiunctlemudc  12370  tx2cn  12910  txdis  12917  txhmeo  12959  xmetxp  13147  xmetxpbl  13148  xmettxlem  13149  xmettx  13150
  Copyright terms: Public domain W3C validator