![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp1st | GIF version |
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp1st | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4676 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2763 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2763 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op1std 6201 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (1st ‘𝐴) = 𝑏) |
5 | 4 | eleq1d 2262 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((1st ‘𝐴) ∈ 𝐵 ↔ 𝑏 ∈ 𝐵)) |
6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑏 ∈ 𝐵) → (1st ‘𝐴) ∈ 𝐵) |
7 | 6 | adantrr 479 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
8 | 7 | exlimivv 1908 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (1st ‘𝐴) ∈ 𝐵) |
9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 〈cop 3621 × cxp 4657 ‘cfv 5254 1st c1st 6191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-1st 6193 |
This theorem is referenced by: disjxp1 6289 xpf1o 6900 xpmapenlem 6905 opabfi 6992 djuf1olem 7112 eldju1st 7130 exmidapne 7320 dfplpq2 7414 dfmpq2 7415 enqbreq2 7417 enqdc1 7422 mulpipq2 7431 preqlu 7532 elnp1st2nd 7536 cauappcvgprlemladd 7718 elreal2 7890 cnref1o 9716 frecuzrdgrrn 10479 frec2uzrdg 10480 frecuzrdgrcl 10481 frecuzrdgsuc 10485 frecuzrdgrclt 10486 frecuzrdgg 10487 frecuzrdgsuctlem 10494 seq3val 10531 seqvalcd 10532 fsum2dlemstep 11577 fisumcom2 11581 fprod2dlemstep 11765 fprodcom2fi 11769 eucalgval 12192 eucalginv 12194 eucalglt 12195 eucalg 12197 sqpweven 12313 2sqpwodd 12314 ctiunctlemudc 12594 xpsff1o 12932 tx2cn 14438 txdis 14445 txhmeo 14487 xmetxp 14675 xmetxpbl 14676 xmettxlem 14677 xmettx 14678 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |