ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1st GIF version

Theorem xp1st 6156
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp1st (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)

Proof of Theorem xp1st
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4637 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)))
2 vex 2738 . . . . . . 7 𝑏 ∈ V
3 vex 2738 . . . . . . 7 𝑐 ∈ V
42, 3op1std 6139 . . . . . 6 (𝐴 = ⟨𝑏, 𝑐⟩ → (1st𝐴) = 𝑏)
54eleq1d 2244 . . . . 5 (𝐴 = ⟨𝑏, 𝑐⟩ → ((1st𝐴) ∈ 𝐵𝑏𝐵))
65biimpar 297 . . . 4 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑏𝐵) → (1st𝐴) ∈ 𝐵)
76adantrr 479 . . 3 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (1st𝐴) ∈ 𝐵)
87exlimivv 1894 . 2 (∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (1st𝐴) ∈ 𝐵)
91, 8sylbi 121 1 (𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1490  wcel 2146  cop 3592   × cxp 4618  cfv 5208  1st c1st 6129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fv 5216  df-1st 6131
This theorem is referenced by:  disjxp1  6227  xpf1o  6834  xpmapenlem  6839  djuf1olem  7042  eldju1st  7060  dfplpq2  7328  dfmpq2  7329  enqbreq2  7331  enqdc1  7336  mulpipq2  7345  preqlu  7446  elnp1st2nd  7450  cauappcvgprlemladd  7632  elreal2  7804  cnref1o  9623  frecuzrdgrrn  10378  frec2uzrdg  10379  frecuzrdgrcl  10380  frecuzrdgsuc  10384  frecuzrdgrclt  10385  frecuzrdgg  10386  frecuzrdgsuctlem  10393  seq3val  10428  seqvalcd  10429  fsum2dlemstep  11410  fisumcom2  11414  fprod2dlemstep  11598  fprodcom2fi  11602  eucalgval  12021  eucalginv  12023  eucalglt  12024  eucalg  12026  sqpweven  12142  2sqpwodd  12143  ctiunctlemudc  12405  tx2cn  13350  txdis  13357  txhmeo  13399  xmetxp  13587  xmetxpbl  13588  xmettxlem  13589  xmettx  13590
  Copyright terms: Public domain W3C validator