| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version | ||
| Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4696 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
| 2 | vex 2776 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 3 | vex 2776 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
| 4 | 2, 3 | op2ndd 6242 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (2nd ‘𝐴) = 𝑐) |
| 5 | 4 | eleq1d 2275 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
| 6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
| 7 | 6 | adantrl 478 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
| 8 | 7 | exlimivv 1921 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 〈cop 3637 × cxp 4677 ‘cfv 5276 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fv 5284 df-2nd 6234 |
| This theorem is referenced by: xpf1o 6948 xpmapenlem 6953 opabfi 7042 djuf1olem 7162 exmidapne 7379 cc2lem 7385 dfplpq2 7474 dfmpq2 7475 enqbreq2 7477 enqdc1 7482 mulpipq2 7491 preqlu 7592 elnp1st2nd 7596 cauappcvgprlemladd 7778 elreal2 7950 cnref1o 9779 frecuzrdgrrn 10560 frec2uzrdg 10561 frecuzrdgrcl 10562 frecuzrdgtcl 10564 frecuzrdgsuc 10566 frecuzrdgrclt 10567 frecuzrdgg 10568 frecuzrdgdomlem 10569 frecuzrdgfunlem 10571 frecuzrdgsuctlem 10575 seq3val 10612 seqvalcd 10613 fisumcom2 11793 fprodcom2fi 11981 eucalgval 12420 eucalginv 12422 eucalglt 12423 eucalgcvga 12424 eucalg 12425 sqpweven 12541 2sqpwodd 12542 ctiunctlemudc 12852 xpsff1o 13225 tx1cn 14785 txdis 14793 txhmeo 14835 xmetxp 15023 xmetxpbl 15024 xmettxlem 15025 xmettx 15026 |
| Copyright terms: Public domain | W3C validator |