ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2nd GIF version

Theorem xp2nd 6233
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp2nd (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)

Proof of Theorem xp2nd
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4681 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)))
2 vex 2766 . . . . . . 7 𝑏 ∈ V
3 vex 2766 . . . . . . 7 𝑐 ∈ V
42, 3op2ndd 6216 . . . . . 6 (𝐴 = ⟨𝑏, 𝑐⟩ → (2nd𝐴) = 𝑐)
54eleq1d 2265 . . . . 5 (𝐴 = ⟨𝑏, 𝑐⟩ → ((2nd𝐴) ∈ 𝐶𝑐𝐶))
65biimpar 297 . . . 4 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑐𝐶) → (2nd𝐴) ∈ 𝐶)
76adantrl 478 . . 3 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (2nd𝐴) ∈ 𝐶)
87exlimivv 1911 . 2 (∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (2nd𝐴) ∈ 𝐶)
91, 8sylbi 121 1 (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  cop 3626   × cxp 4662  cfv 5259  2nd c2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fv 5267  df-2nd 6208
This theorem is referenced by:  xpf1o  6914  xpmapenlem  6919  opabfi  7008  djuf1olem  7128  exmidapne  7345  cc2lem  7351  dfplpq2  7440  dfmpq2  7441  enqbreq2  7443  enqdc1  7448  mulpipq2  7457  preqlu  7558  elnp1st2nd  7562  cauappcvgprlemladd  7744  elreal2  7916  cnref1o  9744  frecuzrdgrrn  10519  frec2uzrdg  10520  frecuzrdgrcl  10521  frecuzrdgtcl  10523  frecuzrdgsuc  10525  frecuzrdgrclt  10526  frecuzrdgg  10527  frecuzrdgdomlem  10528  frecuzrdgfunlem  10530  frecuzrdgsuctlem  10534  seq3val  10571  seqvalcd  10572  fisumcom2  11622  fprodcom2fi  11810  eucalgval  12249  eucalginv  12251  eucalglt  12252  eucalgcvga  12253  eucalg  12254  sqpweven  12370  2sqpwodd  12371  ctiunctlemudc  12681  xpsff1o  13053  tx1cn  14591  txdis  14599  txhmeo  14641  xmetxp  14829  xmetxpbl  14830  xmettxlem  14831  xmettx  14832
  Copyright terms: Public domain W3C validator