![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version |
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4645 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2742 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2742 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op2ndd 6153 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (2nd ‘𝐴) = 𝑐) |
5 | 4 | eleq1d 2246 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
7 | 6 | adantrl 478 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
8 | 7 | exlimivv 1896 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 〈cop 3597 × cxp 4626 ‘cfv 5218 2nd c2nd 6143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-2nd 6145 |
This theorem is referenced by: xpf1o 6847 xpmapenlem 6852 djuf1olem 7055 exmidapne 7262 cc2lem 7268 dfplpq2 7356 dfmpq2 7357 enqbreq2 7359 enqdc1 7364 mulpipq2 7373 preqlu 7474 elnp1st2nd 7478 cauappcvgprlemladd 7660 elreal2 7832 cnref1o 9653 frecuzrdgrrn 10411 frec2uzrdg 10412 frecuzrdgrcl 10413 frecuzrdgtcl 10415 frecuzrdgsuc 10417 frecuzrdgrclt 10418 frecuzrdgg 10419 frecuzrdgdomlem 10420 frecuzrdgfunlem 10422 frecuzrdgsuctlem 10426 seq3val 10461 seqvalcd 10462 fisumcom2 11449 fprodcom2fi 11637 eucalgval 12057 eucalginv 12059 eucalglt 12060 eucalgcvga 12061 eucalg 12062 sqpweven 12178 2sqpwodd 12179 ctiunctlemudc 12441 xpsff1o 12775 tx1cn 13930 txdis 13938 txhmeo 13980 xmetxp 14168 xmetxpbl 14169 xmettxlem 14170 xmettx 14171 |
Copyright terms: Public domain | W3C validator |