![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version |
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4455 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2622 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2622 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op2ndd 5920 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (2nd ‘𝐴) = 𝑐) |
5 | 4 | eleq1d 2156 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
6 | 5 | biimpar 291 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
7 | 6 | adantrl 462 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
8 | 7 | exlimivv 1824 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
9 | 1, 8 | sylbi 119 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∃wex 1426 ∈ wcel 1438 〈cop 3449 × cxp 4436 ‘cfv 5015 2nd c2nd 5910 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fv 5023 df-2nd 5912 |
This theorem is referenced by: xpf1o 6558 xpmapenlem 6563 djuf1olem 6743 djur 6755 dfplpq2 6911 dfmpq2 6912 enqbreq2 6914 enqdc1 6919 mulpipq2 6928 preqlu 7029 elnp1st2nd 7033 cauappcvgprlemladd 7215 elreal2 7366 cnref1o 9131 frecuzrdgrrn 9811 frec2uzrdg 9812 frecuzrdgrcl 9813 frecuzrdgtcl 9815 frecuzrdgsuc 9817 frecuzrdgrclt 9818 frecuzrdgg 9819 frecuzrdgdomlem 9820 frecuzrdgfunlem 9822 frecuzrdgsuctlem 9826 iseqvalt 9869 seq3val 9870 fisumcom2 10828 eucalgval 11310 eucalginv 11312 eucalglt 11313 eucialgcvga 11314 eucialg 11315 sqpweven 11427 2sqpwodd 11428 |
Copyright terms: Public domain | W3C validator |