![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version |
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4644 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2741 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2741 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op2ndd 6150 | . . . . . 6 ⊢ (𝐴 = ⟨𝑏, 𝑐⟩ → (2nd ‘𝐴) = 𝑐) |
5 | 4 | eleq1d 2246 | . . . . 5 ⊢ (𝐴 = ⟨𝑏, 𝑐⟩ → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
7 | 6 | adantrl 478 | . . 3 ⊢ ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
8 | 7 | exlimivv 1896 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⟨cop 3596 × cxp 4625 ‘cfv 5217 2nd c2nd 6140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-iota 5179 df-fun 5219 df-fv 5225 df-2nd 6142 |
This theorem is referenced by: xpf1o 6844 xpmapenlem 6849 djuf1olem 7052 exmidapne 7259 cc2lem 7265 dfplpq2 7353 dfmpq2 7354 enqbreq2 7356 enqdc1 7361 mulpipq2 7370 preqlu 7471 elnp1st2nd 7475 cauappcvgprlemladd 7657 elreal2 7829 cnref1o 9650 frecuzrdgrrn 10408 frec2uzrdg 10409 frecuzrdgrcl 10410 frecuzrdgtcl 10412 frecuzrdgsuc 10414 frecuzrdgrclt 10415 frecuzrdgg 10416 frecuzrdgdomlem 10417 frecuzrdgfunlem 10419 frecuzrdgsuctlem 10423 seq3val 10458 seqvalcd 10459 fisumcom2 11446 fprodcom2fi 11634 eucalgval 12054 eucalginv 12056 eucalglt 12057 eucalgcvga 12058 eucalg 12059 sqpweven 12175 2sqpwodd 12176 ctiunctlemudc 12438 xpsff1o 12768 tx1cn 13772 txdis 13780 txhmeo 13822 xmetxp 14010 xmetxpbl 14011 xmettxlem 14012 xmettx 14013 |
Copyright terms: Public domain | W3C validator |