Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version |
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4596 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2712 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2712 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op2ndd 6087 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (2nd ‘𝐴) = 𝑐) |
5 | 4 | eleq1d 2223 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
6 | 5 | biimpar 295 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
7 | 6 | adantrl 470 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
8 | 7 | exlimivv 1873 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
9 | 1, 8 | sylbi 120 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∃wex 1469 ∈ wcel 2125 〈cop 3559 × cxp 4577 ‘cfv 5163 2nd c2nd 6077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fv 5171 df-2nd 6079 |
This theorem is referenced by: xpf1o 6778 xpmapenlem 6783 djuf1olem 6983 cc2lem 7165 dfplpq2 7253 dfmpq2 7254 enqbreq2 7256 enqdc1 7261 mulpipq2 7270 preqlu 7371 elnp1st2nd 7375 cauappcvgprlemladd 7557 elreal2 7729 cnref1o 9537 frecuzrdgrrn 10285 frec2uzrdg 10286 frecuzrdgrcl 10287 frecuzrdgtcl 10289 frecuzrdgsuc 10291 frecuzrdgrclt 10292 frecuzrdgg 10293 frecuzrdgdomlem 10294 frecuzrdgfunlem 10296 frecuzrdgsuctlem 10300 seq3val 10335 seqvalcd 10336 fisumcom2 11312 fprodcom2fi 11500 eucalgval 11903 eucalginv 11905 eucalglt 11906 eucalgcvga 11907 eucalg 11908 sqpweven 12021 2sqpwodd 12022 ctiunctlemudc 12125 tx1cn 12616 txdis 12624 txhmeo 12666 xmetxp 12854 xmetxpbl 12855 xmettxlem 12856 xmettx 12857 |
Copyright terms: Public domain | W3C validator |