| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version | ||
| Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4713 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
| 2 | vex 2782 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 3 | vex 2782 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
| 4 | 2, 3 | op2ndd 6265 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (2nd ‘𝐴) = 𝑐) |
| 5 | 4 | eleq1d 2278 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
| 6 | 5 | biimpar 297 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
| 7 | 6 | adantrl 478 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
| 8 | 7 | exlimivv 1923 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 〈cop 3649 × cxp 4694 ‘cfv 5294 2nd c2nd 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fv 5302 df-2nd 6257 |
| This theorem is referenced by: xpf1o 6973 xpmapenlem 6978 opabfi 7068 djuf1olem 7188 exmidapne 7414 cc2lem 7420 dfplpq2 7509 dfmpq2 7510 enqbreq2 7512 enqdc1 7517 mulpipq2 7526 preqlu 7627 elnp1st2nd 7631 cauappcvgprlemladd 7813 elreal2 7985 cnref1o 9814 frecuzrdgrrn 10597 frec2uzrdg 10598 frecuzrdgrcl 10599 frecuzrdgtcl 10601 frecuzrdgsuc 10603 frecuzrdgrclt 10604 frecuzrdgg 10605 frecuzrdgdomlem 10606 frecuzrdgfunlem 10608 frecuzrdgsuctlem 10612 seq3val 10649 seqvalcd 10650 fisumcom2 11915 fprodcom2fi 12103 eucalgval 12542 eucalginv 12544 eucalglt 12545 eucalgcvga 12546 eucalg 12547 sqpweven 12663 2sqpwodd 12664 ctiunctlemudc 12974 xpsff1o 13348 tx1cn 14908 txdis 14916 txhmeo 14958 xmetxp 15146 xmetxpbl 15147 xmettxlem 15148 xmettx 15149 |
| Copyright terms: Public domain | W3C validator |