Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xp2nd | GIF version |
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
xp2nd | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4621 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶))) | |
2 | vex 2729 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
3 | vex 2729 | . . . . . . 7 ⊢ 𝑐 ∈ V | |
4 | 2, 3 | op2ndd 6117 | . . . . . 6 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → (2nd ‘𝐴) = 𝑐) |
5 | 4 | eleq1d 2235 | . . . . 5 ⊢ (𝐴 = 〈𝑏, 𝑐〉 → ((2nd ‘𝐴) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶)) |
6 | 5 | biimpar 295 | . . . 4 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ 𝑐 ∈ 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
7 | 6 | adantrl 470 | . . 3 ⊢ ((𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
8 | 7 | exlimivv 1884 | . 2 ⊢ (∃𝑏∃𝑐(𝐴 = 〈𝑏, 𝑐〉 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (2nd ‘𝐴) ∈ 𝐶) |
9 | 1, 8 | sylbi 120 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 〈cop 3579 × cxp 4602 ‘cfv 5188 2nd c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-2nd 6109 |
This theorem is referenced by: xpf1o 6810 xpmapenlem 6815 djuf1olem 7018 cc2lem 7207 dfplpq2 7295 dfmpq2 7296 enqbreq2 7298 enqdc1 7303 mulpipq2 7312 preqlu 7413 elnp1st2nd 7417 cauappcvgprlemladd 7599 elreal2 7771 cnref1o 9588 frecuzrdgrrn 10343 frec2uzrdg 10344 frecuzrdgrcl 10345 frecuzrdgtcl 10347 frecuzrdgsuc 10349 frecuzrdgrclt 10350 frecuzrdgg 10351 frecuzrdgdomlem 10352 frecuzrdgfunlem 10354 frecuzrdgsuctlem 10358 seq3val 10393 seqvalcd 10394 fisumcom2 11379 fprodcom2fi 11567 eucalgval 11986 eucalginv 11988 eucalglt 11989 eucalgcvga 11990 eucalg 11991 sqpweven 12107 2sqpwodd 12108 ctiunctlemudc 12370 tx1cn 12909 txdis 12917 txhmeo 12959 xmetxp 13147 xmetxpbl 13148 xmettxlem 13149 xmettx 13150 |
Copyright terms: Public domain | W3C validator |