![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en3i | GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
Ref | Expression |
---|---|
en3i.1 | ⊢ 𝐴 ∈ V |
en3i.2 | ⊢ 𝐵 ∈ V |
en3i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
en3i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) |
en3i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
Ref | Expression |
---|---|
en3i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en3i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
3 | en3i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
5 | en3i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
7 | en3i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) | |
8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) |
9 | en3i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) | |
10 | 9 | a1i 9 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) |
11 | 2, 4, 6, 8, 10 | en3d 6771 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
12 | 11 | mptru 1362 | 1 ⊢ 𝐴 ≈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 Vcvv 2739 class class class wbr 4005 ≈ cen 6740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-en 6743 |
This theorem is referenced by: xpmapenlem 6851 nn0ennn 10435 oddennn 12395 evenennn 12396 znnen 12401 |
Copyright terms: Public domain | W3C validator |