Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en3i | GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
Ref | Expression |
---|---|
en3i.1 | ⊢ 𝐴 ∈ V |
en3i.2 | ⊢ 𝐵 ∈ V |
en3i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
en3i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) |
en3i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
Ref | Expression |
---|---|
en3i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en3i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
3 | en3i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
5 | en3i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
7 | en3i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) | |
8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) |
9 | en3i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) | |
10 | 9 | a1i 9 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) |
11 | 2, 4, 6, 8, 10 | en3d 6743 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
12 | 11 | mptru 1357 | 1 ⊢ 𝐴 ≈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 Vcvv 2730 class class class wbr 3987 ≈ cen 6712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-en 6715 |
This theorem is referenced by: xpmapenlem 6823 nn0ennn 10376 oddennn 12334 evenennn 12335 znnen 12340 |
Copyright terms: Public domain | W3C validator |