| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en3i | GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
| Ref | Expression |
|---|---|
| en3i.1 | ⊢ 𝐴 ∈ V |
| en3i.2 | ⊢ 𝐵 ∈ V |
| en3i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| en3i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) |
| en3i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
| Ref | Expression |
|---|---|
| en3i | ⊢ 𝐴 ≈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
| 3 | en3i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
| 5 | en3i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| 7 | en3i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) |
| 9 | en3i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) | |
| 10 | 9 | a1i 9 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) |
| 11 | 2, 4, 6, 8, 10 | en3d 6859 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
| 12 | 11 | mptru 1381 | 1 ⊢ 𝐴 ≈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ⊤wtru 1373 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 ≈ cen 6824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-en 6827 |
| This theorem is referenced by: xpmapenlem 6945 nn0ennn 10576 oddennn 12705 evenennn 12706 znnen 12711 |
| Copyright terms: Public domain | W3C validator |