Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulclnq0 | GIF version |
Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
Ref | Expression |
---|---|
mulclnq0 | ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq0 7387 | . . 3 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
2 | oveq1 5860 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 )) | |
3 | 2 | eleq1d 2239 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ))) |
4 | oveq2 5861 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 𝐵)) | |
5 | 4 | eleq1d 2239 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → ((𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 ))) |
6 | mulnnnq0 7412 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ) | |
7 | nnmcl 6460 | . . . . . . 7 ⊢ ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) ∈ ω) | |
8 | mulpiord 7279 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤)) | |
9 | mulclpi 7290 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) ∈ N) | |
10 | 8, 9 | eqeltrrd 2248 | . . . . . . 7 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·o 𝑤) ∈ N) |
11 | 7, 10 | anim12i 336 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦 ∈ N ∧ 𝑤 ∈ N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N)) |
12 | 11 | an4s 583 | . . . . 5 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N)) |
13 | opelxpi 4643 | . . . . 5 ⊢ (((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) → 〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 ∈ (ω × N)) | |
14 | enq0ex 7401 | . . . . . 6 ⊢ ~Q0 ∈ V | |
15 | 14 | ecelqsi 6567 | . . . . 5 ⊢ (〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 ∈ (ω × N) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
16 | 12, 13, 15 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
17 | 6, 16 | eqeltrd 2247 | . . 3 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 )) |
18 | 1, 3, 5, 17 | 2ecoptocl 6601 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 )) |
19 | 18, 1 | eleqtrrdi 2264 | 1 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 〈cop 3586 ωcom 4574 × cxp 4609 (class class class)co 5853 ·o comu 6393 [cec 6511 / cqs 6512 Ncnpi 7234 ·N cmi 7236 ~Q0 ceq0 7248 Q0cnq0 7249 ·Q0 cmq0 7252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-enq0 7386 df-nq0 7387 df-mq0 7390 |
This theorem is referenced by: prarloclemcalc 7464 |
Copyright terms: Public domain | W3C validator |