ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq0 GIF version

Theorem mulclnq0 7260
Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
mulclnq0 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)

Proof of Theorem mulclnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7233 . . 3 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5781 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
32eleq1d 2208 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 )))
4 oveq2 5782 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 𝐵))
54eleq1d 2208 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 )))
6 mulnnnq0 7258 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 )
7 nnmcl 6377 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) ∈ ω)
8 mulpiord 7125 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤))
9 mulclpi 7136 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
108, 9eqeltrrd 2217 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) ∈ N)
117, 10anim12i 336 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦N𝑤N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
1211an4s 577 . . . . 5 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
13 opelxpi 4571 . . . . 5 (((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) → ⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ ∈ (ω × N))
14 enq0ex 7247 . . . . . 6 ~Q0 ∈ V
1514ecelqsi 6483 . . . . 5 (⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ ∈ (ω × N) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
1612, 13, 153syl 17 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
176, 16eqeltrd 2216 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ))
181, 3, 5, 172ecoptocl 6517 . 2 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 ))
1918, 1eleqtrrdi 2233 1 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cop 3530  ωcom 4504   × cxp 4537  (class class class)co 5774   ·o comu 6311  [cec 6427   / cqs 6428  Ncnpi 7080   ·N cmi 7082   ~Q0 ceq0 7094  Q0cnq0 7095   ·Q0 cmq0 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-mi 7114  df-enq0 7232  df-nq0 7233  df-mq0 7236
This theorem is referenced by:  prarloclemcalc  7310
  Copyright terms: Public domain W3C validator