![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulclnq0 | GIF version |
Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
Ref | Expression |
---|---|
mulclnq0 | ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq0 7487 | . . 3 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
2 | oveq1 5926 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 )) | |
3 | 2 | eleq1d 2262 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ))) |
4 | oveq2 5927 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 𝐵)) | |
5 | 4 | eleq1d 2262 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → ((𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 ))) |
6 | mulnnnq0 7512 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ) | |
7 | nnmcl 6536 | . . . . . . 7 ⊢ ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) ∈ ω) | |
8 | mulpiord 7379 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤)) | |
9 | mulclpi 7390 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) ∈ N) | |
10 | 8, 9 | eqeltrrd 2271 | . . . . . . 7 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·o 𝑤) ∈ N) |
11 | 7, 10 | anim12i 338 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦 ∈ N ∧ 𝑤 ∈ N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N)) |
12 | 11 | an4s 588 | . . . . 5 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N)) |
13 | opelxpi 4692 | . . . . 5 ⊢ (((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) → 〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 ∈ (ω × N)) | |
14 | enq0ex 7501 | . . . . . 6 ⊢ ~Q0 ∈ V | |
15 | 14 | ecelqsi 6645 | . . . . 5 ⊢ (〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 ∈ (ω × N) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
16 | 12, 13, 15 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
17 | 6, 16 | eqeltrd 2270 | . . 3 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 )) |
18 | 1, 3, 5, 17 | 2ecoptocl 6679 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 )) |
19 | 18, 1 | eleqtrrdi 2287 | 1 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3622 ωcom 4623 × cxp 4658 (class class class)co 5919 ·o comu 6469 [cec 6587 / cqs 6588 Ncnpi 7334 ·N cmi 7336 ~Q0 ceq0 7348 Q0cnq0 7349 ·Q0 cmq0 7352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-mi 7368 df-enq0 7486 df-nq0 7487 df-mq0 7490 |
This theorem is referenced by: prarloclemcalc 7564 |
Copyright terms: Public domain | W3C validator |