ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq0 GIF version

Theorem mulclnq0 7161
Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
mulclnq0 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)

Proof of Theorem mulclnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7134 . . 3 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5713 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
32eleq1d 2168 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 )))
4 oveq2 5714 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 𝐵))
54eleq1d 2168 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 )))
6 mulnnnq0 7159 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 )
7 nnmcl 6307 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) ∈ ω)
8 mulpiord 7026 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤))
9 mulclpi 7037 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
108, 9eqeltrrd 2177 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) ∈ N)
117, 10anim12i 334 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦N𝑤N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
1211an4s 558 . . . . 5 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
13 opelxpi 4509 . . . . 5 (((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) → ⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ ∈ (ω × N))
14 enq0ex 7148 . . . . . 6 ~Q0 ∈ V
1514ecelqsi 6413 . . . . 5 (⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ ∈ (ω × N) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
1612, 13, 153syl 17 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
176, 16eqeltrd 2176 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ))
181, 3, 5, 172ecoptocl 6447 . 2 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 ))
1918, 1syl6eleqr 2193 1 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  cop 3477  ωcom 4442   × cxp 4475  (class class class)co 5706   ·o comu 6241  [cec 6357   / cqs 6358  Ncnpi 6981   ·N cmi 6983   ~Q0 ceq0 6995  Q0cnq0 6996   ·Q0 cmq0 6999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-mi 7015  df-enq0 7133  df-nq0 7134  df-mq0 7137
This theorem is referenced by:  prarloclemcalc  7211
  Copyright terms: Public domain W3C validator