| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclnq0 | GIF version | ||
| Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| mulclnq0 | ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq0 7580 | . . 3 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
| 2 | oveq1 5981 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 )) | |
| 3 | 2 | eleq1d 2278 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ))) |
| 4 | oveq2 5982 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 𝐵)) | |
| 5 | 4 | eleq1d 2278 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → ((𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 ))) |
| 6 | mulnnnq0 7605 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ) | |
| 7 | nnmcl 6597 | . . . . . . 7 ⊢ ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) ∈ ω) | |
| 8 | mulpiord 7472 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤)) | |
| 9 | mulclpi 7483 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) ∈ N) | |
| 10 | 8, 9 | eqeltrrd 2287 | . . . . . . 7 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·o 𝑤) ∈ N) |
| 11 | 7, 10 | anim12i 338 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦 ∈ N ∧ 𝑤 ∈ N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N)) |
| 12 | 11 | an4s 590 | . . . . 5 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N)) |
| 13 | opelxpi 4728 | . . . . 5 ⊢ (((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) → 〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 ∈ (ω × N)) | |
| 14 | enq0ex 7594 | . . . . . 6 ⊢ ~Q0 ∈ V | |
| 15 | 14 | ecelqsi 6706 | . . . . 5 ⊢ (〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 ∈ (ω × N) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
| 16 | 12, 13, 15 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
| 17 | 6, 16 | eqeltrd 2286 | . . 3 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 )) |
| 18 | 1, 3, 5, 17 | 2ecoptocl 6740 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 )) |
| 19 | 18, 1 | eleqtrrdi 2303 | 1 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 〈cop 3649 ωcom 4659 × cxp 4694 (class class class)co 5974 ·o comu 6530 [cec 6648 / cqs 6649 Ncnpi 7427 ·N cmi 7429 ~Q0 ceq0 7441 Q0cnq0 7442 ·Q0 cmq0 7445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-enq0 7579 df-nq0 7580 df-mq0 7583 |
| This theorem is referenced by: prarloclemcalc 7657 |
| Copyright terms: Public domain | W3C validator |