![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neg1lt0 | GIF version |
Description: -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
neg1lt0 | ⊢ -1 < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg0 7925 | . . 3 ⊢ -0 = 0 | |
2 | 0lt1 7806 | . . 3 ⊢ 0 < 1 | |
3 | 1, 2 | eqbrtri 3912 | . 2 ⊢ -0 < 1 |
4 | 1re 7683 | . . 3 ⊢ 1 ∈ ℝ | |
5 | 0re 7684 | . . 3 ⊢ 0 ∈ ℝ | |
6 | 4, 5 | ltnegcon1i 8174 | . 2 ⊢ (-1 < 0 ↔ -0 < 1) |
7 | 3, 6 | mpbir 145 | 1 ⊢ -1 < 0 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3893 0cc0 7541 1c1 7542 < clt 7718 -cneg 7851 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-iota 5044 df-fun 5081 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7720 df-mnf 7721 df-ltxr 7723 df-sub 7852 df-neg 7853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |