Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > halflt1 | GIF version |
Description: One-half is less than one. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
halflt1 | ⊢ (1 / 2) < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1div1e1 8592 | . . 3 ⊢ (1 / 1) = 1 | |
2 | 1lt2 9018 | . . 3 ⊢ 1 < 2 | |
3 | 1, 2 | eqbrtri 3998 | . 2 ⊢ (1 / 1) < 2 |
4 | 1re 7890 | . . 3 ⊢ 1 ∈ ℝ | |
5 | 2re 8919 | . . 3 ⊢ 2 ∈ ℝ | |
6 | 0lt1 8017 | . . 3 ⊢ 0 < 1 | |
7 | 2pos 8940 | . . 3 ⊢ 0 < 2 | |
8 | 4, 4, 5, 6, 7 | ltdiv23ii 8814 | . 2 ⊢ ((1 / 1) < 2 ↔ (1 / 2) < 1) |
9 | 3, 8 | mpbi 144 | 1 ⊢ (1 / 2) < 1 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3977 (class class class)co 5837 1c1 7746 < clt 7925 / cdiv 8560 2c2 8900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-iota 5148 df-fun 5185 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-2 8908 |
This theorem is referenced by: 2tnp1ge0ge0 10227 resqrexlemlo 10945 geo2sum 11445 geo2lim 11447 geoihalfsum 11453 efcllemp 11589 cos12dec 11698 ltoddhalfle 11819 halfleoddlt 11820 cvgcmp2nlemabs 13773 trilpolemisumle 13779 |
Copyright terms: Public domain | W3C validator |