Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fovrnd | GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovrnd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovrnd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovrnd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovrnd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovrnd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovrnd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovrnd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovrn 5960 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1220 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 × cxp 4583 ⟶wf 5165 (class class class)co 5821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-ov 5824 |
This theorem is referenced by: eroveu 6568 isxmet2d 12719 ismet2 12725 comet 12870 bdmetval 12871 txmetcnp 12889 limccnp2lem 13016 limccnp2cntop 13017 |
Copyright terms: Public domain | W3C validator |