Proof of Theorem imasmulr
Step | Hyp | Ref
| Expression |
1 | | imasmulr.t |
. 2
⊢ ∙ =
(.r‘𝑈) |
2 | | imasbas.u |
. . . . 5
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
3 | | imasbas.v |
. . . . 5
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
4 | | eqid 2177 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
5 | | imasmulr.p |
. . . . 5
⊢ · =
(.r‘𝑅) |
6 | | eqid 2177 |
. . . . 5
⊢ (
·𝑠 ‘𝑅) = ( ·𝑠
‘𝑅) |
7 | | eqidd 2178 |
. . . . 5
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
8 | | eqidd 2178 |
. . . . 5
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
9 | | imasbas.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
10 | | imasbas.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 12732 |
. . . 4
⊢ (𝜑 → 𝑈 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}) |
12 | 11 | fveq1d 5519 |
. . 3
⊢ (𝜑 → (𝑈‘(.r‘ndx)) =
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}‘(.r‘ndx))) |
13 | | fof 5440 |
. . . . . . . 8
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
14 | 9, 13 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
15 | | basfn 12522 |
. . . . . . . . 9
⊢ Base Fn
V |
16 | 10 | elexd 2752 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ V) |
17 | | funfvex 5534 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
18 | 17 | funfni 5318 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
19 | 15, 16, 18 | sylancr 414 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
20 | 3, 19 | eqeltrd 2254 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ V) |
21 | 14, 20 | fexd 5748 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
22 | | imasex 12731 |
. . . . . 6
⊢ ((𝐹 ∈ V ∧ 𝑅 ∈ 𝑍) → (𝐹 “s 𝑅) ∈ V) |
23 | 21, 10, 22 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) |
24 | 2, 23 | eqeltrd 2254 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ V) |
25 | | mulridx 12591 |
. . . 4
⊢
.r = Slot (.r‘ndx) |
26 | | mulrslid 12592 |
. . . . 5
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
27 | 26 | simpri 113 |
. . . 4
⊢
(.r‘ndx) ∈ ℕ |
28 | 24, 25, 27 | strndxid 12492 |
. . 3
⊢ (𝜑 → (𝑈‘(.r‘ndx)) =
(.r‘𝑈)) |
29 | 27 | a1i 9 |
. . . 4
⊢ (𝜑 → (.r‘ndx)
∈ ℕ) |
30 | | vex 2742 |
. . . . . . . . . . . 12
⊢ 𝑝 ∈ V |
31 | | fvexg 5536 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹‘𝑝) ∈ V) |
32 | 21, 30, 31 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑝) ∈ V) |
33 | | vex 2742 |
. . . . . . . . . . . 12
⊢ 𝑞 ∈ V |
34 | | fvexg 5536 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹‘𝑞) ∈ V) |
35 | 21, 33, 34 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑞) ∈ V) |
36 | | opexg 4230 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑝) ∈ V ∧ (𝐹‘𝑞) ∈ V) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
37 | 32, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
38 | 26 | slotex 12491 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ 𝑍 → (.r‘𝑅) ∈ V) |
39 | 10, 38 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (.r‘𝑅) ∈ V) |
40 | 5, 39 | eqeltrid 2264 |
. . . . . . . . . . . 12
⊢ (𝜑 → · ∈
V) |
41 | 33 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑞 ∈ V) |
42 | | ovexg 5911 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ V ∧ · ∈
V ∧ 𝑞 ∈ V) →
(𝑝 · 𝑞) ∈ V) |
43 | 30, 40, 41, 42 | mp3an2i 1342 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑝 · 𝑞) ∈ V) |
44 | | fvexg 5536 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ V ∧ (𝑝 · 𝑞) ∈ V) → (𝐹‘(𝑝 · 𝑞)) ∈ V) |
45 | 21, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝑝 · 𝑞)) ∈ V) |
46 | | opexg 4230 |
. . . . . . . . . 10
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝 · 𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ V) |
47 | 37, 45, 46 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ V) |
48 | | snexg 4186 |
. . . . . . . . 9
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
49 | 47, 48 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
50 | 49 | ralrimivw 2551 |
. . . . . . 7
⊢ (𝜑 → ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
51 | | iunexg 6122 |
. . . . . . 7
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
52 | 20, 50, 51 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
53 | 52 | ralrimivw 2551 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
54 | | iunexg 6122 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
55 | 20, 53, 54 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
56 | | basendxnmulrndx 12594 |
. . . . 5
⊢
(Base‘ndx) ≠ (.r‘ndx) |
57 | 56 | a1i 9 |
. . . 4
⊢ (𝜑 → (Base‘ndx) ≠
(.r‘ndx)) |
58 | | plusgndxnmulrndx 12593 |
. . . . 5
⊢
(+g‘ndx) ≠
(.r‘ndx) |
59 | 58 | a1i 9 |
. . . 4
⊢ (𝜑 → (+g‘ndx)
≠ (.r‘ndx)) |
60 | | fvtp3g 5728 |
. . . 4
⊢
((((.r‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) ∧ ((Base‘ndx)
≠ (.r‘ndx) ∧ (+g‘ndx) ≠
(.r‘ndx))) → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}‘(.r‘ndx))
= ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
61 | 29, 55, 57, 59, 60 | syl22anc 1239 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}‘(.r‘ndx))
= ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
62 | 12, 28, 61 | 3eqtr3rd 2219 |
. 2
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} = (.r‘𝑈)) |
63 | 1, 62 | eqtr4id 2229 |
1
⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |