Proof of Theorem imasmulr
| Step | Hyp | Ref
| Expression |
| 1 | | imasmulr.t |
. 2
⊢ ∙ =
(.r‘𝑈) |
| 2 | | imasbas.u |
. . . . 5
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 3 | | imasbas.v |
. . . . 5
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 4 | | eqid 2196 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 5 | | imasmulr.p |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 6 | | eqid 2196 |
. . . . 5
⊢ (
·𝑠 ‘𝑅) = ( ·𝑠
‘𝑅) |
| 7 | | eqidd 2197 |
. . . . 5
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
| 8 | | eqidd 2197 |
. . . . 5
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| 9 | | imasbas.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 10 | | imasbas.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 13008 |
. . . 4
⊢ (𝜑 → 𝑈 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}) |
| 12 | 11 | fveq1d 5563 |
. . 3
⊢ (𝜑 → (𝑈‘(.r‘ndx)) =
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}‘(.r‘ndx))) |
| 13 | | fof 5483 |
. . . . . . . 8
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
| 14 | 9, 13 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 15 | | basfn 12761 |
. . . . . . . . 9
⊢ Base Fn
V |
| 16 | 10 | elexd 2776 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ V) |
| 17 | | funfvex 5578 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 18 | 17 | funfni 5361 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 19 | 15, 16, 18 | sylancr 414 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 20 | 3, 19 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ V) |
| 21 | 14, 20 | fexd 5795 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
| 22 | | imasex 13007 |
. . . . . 6
⊢ ((𝐹 ∈ V ∧ 𝑅 ∈ 𝑍) → (𝐹 “s 𝑅) ∈ V) |
| 23 | 21, 10, 22 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐹 “s 𝑅) ∈ V) |
| 24 | 2, 23 | eqeltrd 2273 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ V) |
| 25 | | mulridx 12833 |
. . . 4
⊢
.r = Slot (.r‘ndx) |
| 26 | | mulrslid 12834 |
. . . . 5
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
| 27 | 26 | simpri 113 |
. . . 4
⊢
(.r‘ndx) ∈ ℕ |
| 28 | 24, 25, 27 | strndxid 12731 |
. . 3
⊢ (𝜑 → (𝑈‘(.r‘ndx)) =
(.r‘𝑈)) |
| 29 | 27 | a1i 9 |
. . . 4
⊢ (𝜑 → (.r‘ndx)
∈ ℕ) |
| 30 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑝 ∈ V |
| 31 | | fvexg 5580 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹‘𝑝) ∈ V) |
| 32 | 21, 30, 31 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑝) ∈ V) |
| 33 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑞 ∈ V |
| 34 | | fvexg 5580 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹‘𝑞) ∈ V) |
| 35 | 21, 33, 34 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑞) ∈ V) |
| 36 | | opexg 4262 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑝) ∈ V ∧ (𝐹‘𝑞) ∈ V) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
| 37 | 32, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
| 38 | 26 | slotex 12730 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ 𝑍 → (.r‘𝑅) ∈ V) |
| 39 | 10, 38 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (.r‘𝑅) ∈ V) |
| 40 | 5, 39 | eqeltrid 2283 |
. . . . . . . . . . . 12
⊢ (𝜑 → · ∈
V) |
| 41 | 33 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑞 ∈ V) |
| 42 | | ovexg 5959 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ V ∧ · ∈
V ∧ 𝑞 ∈ V) →
(𝑝 · 𝑞) ∈ V) |
| 43 | 30, 40, 41, 42 | mp3an2i 1353 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑝 · 𝑞) ∈ V) |
| 44 | | fvexg 5580 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ V ∧ (𝑝 · 𝑞) ∈ V) → (𝐹‘(𝑝 · 𝑞)) ∈ V) |
| 45 | 21, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝑝 · 𝑞)) ∈ V) |
| 46 | | opexg 4262 |
. . . . . . . . . 10
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝 · 𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ V) |
| 47 | 37, 45, 46 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ V) |
| 48 | | snexg 4218 |
. . . . . . . . 9
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 49 | 47, 48 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 50 | 49 | ralrimivw 2571 |
. . . . . . 7
⊢ (𝜑 → ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 51 | | iunexg 6185 |
. . . . . . 7
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 52 | 20, 50, 51 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 53 | 52 | ralrimivw 2571 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 54 | | iunexg 6185 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 55 | 20, 53, 54 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) |
| 56 | | basendxnmulrndx 12836 |
. . . . 5
⊢
(Base‘ndx) ≠ (.r‘ndx) |
| 57 | 56 | a1i 9 |
. . . 4
⊢ (𝜑 → (Base‘ndx) ≠
(.r‘ndx)) |
| 58 | | plusgndxnmulrndx 12835 |
. . . . 5
⊢
(+g‘ndx) ≠
(.r‘ndx) |
| 59 | 58 | a1i 9 |
. . . 4
⊢ (𝜑 → (+g‘ndx)
≠ (.r‘ndx)) |
| 60 | | fvtp3g 5775 |
. . . 4
⊢
((((.r‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ∈ V) ∧ ((Base‘ndx)
≠ (.r‘ndx) ∧ (+g‘ndx) ≠
(.r‘ndx))) → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}‘(.r‘ndx))
= ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| 61 | 29, 55, 57, 59, 60 | syl22anc 1250 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}〉}‘(.r‘ndx))
= ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| 62 | 12, 28, 61 | 3eqtr3rd 2238 |
. 2
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} = (.r‘𝑈)) |
| 63 | 1, 62 | eqtr4id 2248 |
1
⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |