![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemjn | GIF version |
Description: Lemma for ennnfone 12585. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
Ref | Expression |
---|---|
ennnfonelemjn | ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9631 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 0p1e1 9098 | . . . . 5 ⊢ (0 + 1) = 1 | |
3 | 2 | fveq2i 5558 | . . . 4 ⊢ (ℤ≥‘(0 + 1)) = (ℤ≥‘1) |
4 | 1, 3 | eqtr4i 2217 | . . 3 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
5 | 4 | eleq2i 2260 | . 2 ⊢ (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ≥‘(0 + 1))) |
6 | ennnfonelemh.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | eqeq1 2200 | . . . . 5 ⊢ (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0)) | |
8 | fvoveq1 5942 | . . . . 5 ⊢ (𝑥 = 𝑓 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(𝑓 − 1))) | |
9 | 7, 8 | ifbieq2d 3582 | . . . 4 ⊢ (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
10 | nnnn0 9250 | . . . . 5 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0) | |
11 | 10 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0) |
12 | nnne0 9012 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ≠ 0) | |
13 | 12 | neneqd 2385 | . . . . . . 7 ⊢ (𝑓 ∈ ℕ → ¬ 𝑓 = 0) |
14 | 13 | iffalsed 3568 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
15 | 14 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
16 | 0zd 9332 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 0 ∈ ℤ) | |
17 | ennnfonelemh.n | . . . . . . . 8 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
18 | 16, 17 | frec2uzf1od 10480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
19 | f1ocnv 5514 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→(ℤ≥‘0) → ◡𝑁:(ℤ≥‘0)–1-1-onto→ω) | |
20 | f1of 5501 | . . . . . . 7 ⊢ (◡𝑁:(ℤ≥‘0)–1-1-onto→ω → ◡𝑁:(ℤ≥‘0)⟶ω) | |
21 | 18, 19, 20 | 3syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → ◡𝑁:(ℤ≥‘0)⟶ω) |
22 | 0z 9331 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
23 | 5 | biimpi 120 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
24 | 23 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
25 | eluzp1m1 9619 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ≥‘0)) | |
26 | 22, 24, 25 | sylancr 414 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ≥‘0)) |
27 | 21, 26 | ffvelcdmd 5695 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (◡𝑁‘(𝑓 − 1)) ∈ ω) |
28 | 15, 27 | eqeltrd 2270 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) ∈ ω) |
29 | 6, 9, 11, 28 | fvmptd3 5652 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
30 | 29, 28 | eqeltrd 2270 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) ∈ ω) |
31 | 5, 30 | sylan2br 288 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ∃wrex 2473 ∪ cun 3152 ∅c0 3447 ifcif 3558 {csn 3619 〈cop 3622 ↦ cmpt 4091 suc csuc 4397 ωcom 4623 ◡ccnv 4659 dom cdm 4660 “ cima 4663 ⟶wf 5251 –onto→wfo 5253 –1-1-onto→wf1o 5254 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 freccfrec 6445 ↑pm cpm 6705 0cc0 7874 1c1 7875 + caddc 7877 − cmin 8192 ℕcn 8984 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 seqcseq 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 |
This theorem is referenced by: ennnfonelemh 12564 ennnfonelem0 12565 ennnfonelemp1 12566 ennnfonelemom 12568 |
Copyright terms: Public domain | W3C validator |