ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn GIF version

Theorem ennnfonelemjn 12773
Description: Lemma for ennnfone 12796. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemjn ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝑁   𝑥,𝑓,𝑦   𝑥,𝑗,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9684 . . . 4 ℕ = (ℤ‘1)
2 0p1e1 9150 . . . . 5 (0 + 1) = 1
32fveq2i 5579 . . . 4 (ℤ‘(0 + 1)) = (ℤ‘1)
41, 3eqtr4i 2229 . . 3 ℕ = (ℤ‘(0 + 1))
54eleq2i 2272 . 2 (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ‘(0 + 1)))
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 eqeq1 2212 . . . . 5 (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0))
8 fvoveq1 5967 . . . . 5 (𝑥 = 𝑓 → (𝑁‘(𝑥 − 1)) = (𝑁‘(𝑓 − 1)))
97, 8ifbieq2d 3595 . . . 4 (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))))
10 nnnn0 9302 . . . . 5 (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0)
1110adantl 277 . . . 4 ((𝜑𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0)
12 nnne0 9064 . . . . . . . 8 (𝑓 ∈ ℕ → 𝑓 ≠ 0)
1312neneqd 2397 . . . . . . 7 (𝑓 ∈ ℕ → ¬ 𝑓 = 0)
1413iffalsed 3581 . . . . . 6 (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) = (𝑁‘(𝑓 − 1)))
1514adantl 277 . . . . 5 ((𝜑𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) = (𝑁‘(𝑓 − 1)))
16 0zd 9384 . . . . . . . 8 ((𝜑𝑓 ∈ ℕ) → 0 ∈ ℤ)
17 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1816, 17frec2uzf1od 10551 . . . . . . 7 ((𝜑𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ‘0))
19 f1ocnv 5535 . . . . . . 7 (𝑁:ω–1-1-onto→(ℤ‘0) → 𝑁:(ℤ‘0)–1-1-onto→ω)
20 f1of 5522 . . . . . . 7 (𝑁:(ℤ‘0)–1-1-onto→ω → 𝑁:(ℤ‘0)⟶ω)
2118, 19, 203syl 17 . . . . . 6 ((𝜑𝑓 ∈ ℕ) → 𝑁:(ℤ‘0)⟶ω)
22 0z 9383 . . . . . . 7 0 ∈ ℤ
235biimpi 120 . . . . . . . 8 (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ‘(0 + 1)))
2423adantl 277 . . . . . . 7 ((𝜑𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ‘(0 + 1)))
25 eluzp1m1 9672 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ‘0))
2622, 24, 25sylancr 414 . . . . . 6 ((𝜑𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ‘0))
2721, 26ffvelcdmd 5716 . . . . 5 ((𝜑𝑓 ∈ ℕ) → (𝑁‘(𝑓 − 1)) ∈ ω)
2815, 27eqeltrd 2282 . . . 4 ((𝜑𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) ∈ ω)
296, 9, 11, 28fvmptd3 5673 . . 3 ((𝜑𝑓 ∈ ℕ) → (𝐽𝑓) = if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))))
3029, 28eqeltrd 2282 . 2 ((𝜑𝑓 ∈ ℕ) → (𝐽𝑓) ∈ ω)
315, 30sylan2br 288 1 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  c0 3460  ifcif 3571  {csn 3633  cop 3636  cmpt 4105  suc csuc 4412  ωcom 4638  ccnv 4674  dom cdm 4675  cima 4678  wf 5267  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cmpo 5946  freccfrec 6476  pm cpm 6736  0cc0 7925  1c1 7926   + caddc 7928  cmin 8243  cn 9036  0cn0 9295  cz 9372  cuz 9648  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  ennnfonelemh  12775  ennnfonelem0  12776  ennnfonelemp1  12777  ennnfonelemom  12779
  Copyright terms: Public domain W3C validator