ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn GIF version

Theorem ennnfonelemjn 11922
Description: Lemma for ennnfone 11945. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemjn ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝑁   𝑥,𝑓,𝑦   𝑥,𝑗,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9368 . . . 4 ℕ = (ℤ‘1)
2 0p1e1 8841 . . . . 5 (0 + 1) = 1
32fveq2i 5424 . . . 4 (ℤ‘(0 + 1)) = (ℤ‘1)
41, 3eqtr4i 2163 . . 3 ℕ = (ℤ‘(0 + 1))
54eleq2i 2206 . 2 (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ‘(0 + 1)))
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 eqeq1 2146 . . . . 5 (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0))
8 fvoveq1 5797 . . . . 5 (𝑥 = 𝑓 → (𝑁‘(𝑥 − 1)) = (𝑁‘(𝑓 − 1)))
97, 8ifbieq2d 3496 . . . 4 (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))))
10 nnnn0 8991 . . . . 5 (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0)
1110adantl 275 . . . 4 ((𝜑𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0)
12 nnne0 8755 . . . . . . . 8 (𝑓 ∈ ℕ → 𝑓 ≠ 0)
1312neneqd 2329 . . . . . . 7 (𝑓 ∈ ℕ → ¬ 𝑓 = 0)
1413iffalsed 3484 . . . . . 6 (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) = (𝑁‘(𝑓 − 1)))
1514adantl 275 . . . . 5 ((𝜑𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) = (𝑁‘(𝑓 − 1)))
16 0zd 9073 . . . . . . . 8 ((𝜑𝑓 ∈ ℕ) → 0 ∈ ℤ)
17 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1816, 17frec2uzf1od 10186 . . . . . . 7 ((𝜑𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ‘0))
19 f1ocnv 5380 . . . . . . 7 (𝑁:ω–1-1-onto→(ℤ‘0) → 𝑁:(ℤ‘0)–1-1-onto→ω)
20 f1of 5367 . . . . . . 7 (𝑁:(ℤ‘0)–1-1-onto→ω → 𝑁:(ℤ‘0)⟶ω)
2118, 19, 203syl 17 . . . . . 6 ((𝜑𝑓 ∈ ℕ) → 𝑁:(ℤ‘0)⟶ω)
22 0z 9072 . . . . . . 7 0 ∈ ℤ
235biimpi 119 . . . . . . . 8 (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ‘(0 + 1)))
2423adantl 275 . . . . . . 7 ((𝜑𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ‘(0 + 1)))
25 eluzp1m1 9356 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ‘0))
2622, 24, 25sylancr 410 . . . . . 6 ((𝜑𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ‘0))
2721, 26ffvelrnd 5556 . . . . 5 ((𝜑𝑓 ∈ ℕ) → (𝑁‘(𝑓 − 1)) ∈ ω)
2815, 27eqeltrd 2216 . . . 4 ((𝜑𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) ∈ ω)
296, 9, 11, 28fvmptd3 5514 . . 3 ((𝜑𝑓 ∈ ℕ) → (𝐽𝑓) = if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))))
3029, 28eqeltrd 2216 . 2 ((𝜑𝑓 ∈ ℕ) → (𝐽𝑓) ∈ ω)
315, 30sylan2br 286 1 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wrex 2417  cun 3069  c0 3363  ifcif 3474  {csn 3527  cop 3530  cmpt 3989  suc csuc 4287  ωcom 4504  ccnv 4538  dom cdm 4539  cima 4542  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cmpo 5776  freccfrec 6287  pm cpm 6543  0cc0 7627  1c1 7628   + caddc 7630  cmin 7940  cn 8727  0cn0 8984  cz 9061  cuz 9333  seqcseq 10225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334
This theorem is referenced by:  ennnfonelemh  11924  ennnfonelem0  11925  ennnfonelemp1  11926  ennnfonelemom  11928
  Copyright terms: Public domain W3C validator