| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemjn | GIF version | ||
| Description: Lemma for ennnfone 12796. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| Ref | Expression |
|---|---|
| ennnfonelemjn | ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9684 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 0p1e1 9150 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 3 | 2 | fveq2i 5579 | . . . 4 ⊢ (ℤ≥‘(0 + 1)) = (ℤ≥‘1) |
| 4 | 1, 3 | eqtr4i 2229 | . . 3 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
| 5 | 4 | eleq2i 2272 | . 2 ⊢ (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ≥‘(0 + 1))) |
| 6 | ennnfonelemh.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 7 | eqeq1 2212 | . . . . 5 ⊢ (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0)) | |
| 8 | fvoveq1 5967 | . . . . 5 ⊢ (𝑥 = 𝑓 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(𝑓 − 1))) | |
| 9 | 7, 8 | ifbieq2d 3595 | . . . 4 ⊢ (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
| 10 | nnnn0 9302 | . . . . 5 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0) | |
| 11 | 10 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0) |
| 12 | nnne0 9064 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ≠ 0) | |
| 13 | 12 | neneqd 2397 | . . . . . . 7 ⊢ (𝑓 ∈ ℕ → ¬ 𝑓 = 0) |
| 14 | 13 | iffalsed 3581 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
| 15 | 14 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
| 16 | 0zd 9384 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 0 ∈ ℤ) | |
| 17 | ennnfonelemh.n | . . . . . . . 8 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 18 | 16, 17 | frec2uzf1od 10551 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
| 19 | f1ocnv 5535 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→(ℤ≥‘0) → ◡𝑁:(ℤ≥‘0)–1-1-onto→ω) | |
| 20 | f1of 5522 | . . . . . . 7 ⊢ (◡𝑁:(ℤ≥‘0)–1-1-onto→ω → ◡𝑁:(ℤ≥‘0)⟶ω) | |
| 21 | 18, 19, 20 | 3syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → ◡𝑁:(ℤ≥‘0)⟶ω) |
| 22 | 0z 9383 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 23 | 5 | biimpi 120 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
| 24 | 23 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
| 25 | eluzp1m1 9672 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ≥‘0)) | |
| 26 | 22, 24, 25 | sylancr 414 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ≥‘0)) |
| 27 | 21, 26 | ffvelcdmd 5716 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (◡𝑁‘(𝑓 − 1)) ∈ ω) |
| 28 | 15, 27 | eqeltrd 2282 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) ∈ ω) |
| 29 | 6, 9, 11, 28 | fvmptd3 5673 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
| 30 | 29, 28 | eqeltrd 2282 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) ∈ ω) |
| 31 | 5, 30 | sylan2br 288 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∀wral 2484 ∃wrex 2485 ∪ cun 3164 ∅c0 3460 ifcif 3571 {csn 3633 〈cop 3636 ↦ cmpt 4105 suc csuc 4412 ωcom 4638 ◡ccnv 4674 dom cdm 4675 “ cima 4678 ⟶wf 5267 –onto→wfo 5269 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 freccfrec 6476 ↑pm cpm 6736 0cc0 7925 1c1 7926 + caddc 7928 − cmin 8243 ℕcn 9036 ℕ0cn0 9295 ℤcz 9372 ℤ≥cuz 9648 seqcseq 10592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: ennnfonelemh 12775 ennnfonelem0 12776 ennnfonelemp1 12777 ennnfonelemom 12779 |
| Copyright terms: Public domain | W3C validator |