ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemjn GIF version

Theorem ennnfonelemjn 11951
Description: Lemma for ennnfone 11974. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemjn ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝑁   𝑥,𝑓,𝑦   𝑥,𝑗,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemjn
StepHypRef Expression
1 nnuz 9385 . . . 4 ℕ = (ℤ‘1)
2 0p1e1 8858 . . . . 5 (0 + 1) = 1
32fveq2i 5432 . . . 4 (ℤ‘(0 + 1)) = (ℤ‘1)
41, 3eqtr4i 2164 . . 3 ℕ = (ℤ‘(0 + 1))
54eleq2i 2207 . 2 (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ‘(0 + 1)))
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 eqeq1 2147 . . . . 5 (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0))
8 fvoveq1 5805 . . . . 5 (𝑥 = 𝑓 → (𝑁‘(𝑥 − 1)) = (𝑁‘(𝑓 − 1)))
97, 8ifbieq2d 3501 . . . 4 (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))))
10 nnnn0 9008 . . . . 5 (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0)
1110adantl 275 . . . 4 ((𝜑𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0)
12 nnne0 8772 . . . . . . . 8 (𝑓 ∈ ℕ → 𝑓 ≠ 0)
1312neneqd 2330 . . . . . . 7 (𝑓 ∈ ℕ → ¬ 𝑓 = 0)
1413iffalsed 3489 . . . . . 6 (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) = (𝑁‘(𝑓 − 1)))
1514adantl 275 . . . . 5 ((𝜑𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) = (𝑁‘(𝑓 − 1)))
16 0zd 9090 . . . . . . . 8 ((𝜑𝑓 ∈ ℕ) → 0 ∈ ℤ)
17 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1816, 17frec2uzf1od 10210 . . . . . . 7 ((𝜑𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ‘0))
19 f1ocnv 5388 . . . . . . 7 (𝑁:ω–1-1-onto→(ℤ‘0) → 𝑁:(ℤ‘0)–1-1-onto→ω)
20 f1of 5375 . . . . . . 7 (𝑁:(ℤ‘0)–1-1-onto→ω → 𝑁:(ℤ‘0)⟶ω)
2118, 19, 203syl 17 . . . . . 6 ((𝜑𝑓 ∈ ℕ) → 𝑁:(ℤ‘0)⟶ω)
22 0z 9089 . . . . . . 7 0 ∈ ℤ
235biimpi 119 . . . . . . . 8 (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ‘(0 + 1)))
2423adantl 275 . . . . . . 7 ((𝜑𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ‘(0 + 1)))
25 eluzp1m1 9373 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ‘0))
2622, 24, 25sylancr 411 . . . . . 6 ((𝜑𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ‘0))
2721, 26ffvelrnd 5564 . . . . 5 ((𝜑𝑓 ∈ ℕ) → (𝑁‘(𝑓 − 1)) ∈ ω)
2815, 27eqeltrd 2217 . . . 4 ((𝜑𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))) ∈ ω)
296, 9, 11, 28fvmptd3 5522 . . 3 ((𝜑𝑓 ∈ ℕ) → (𝐽𝑓) = if(𝑓 = 0, ∅, (𝑁‘(𝑓 − 1))))
3029, 28eqeltrd 2217 . 2 ((𝜑𝑓 ∈ ℕ) → (𝐽𝑓) ∈ ω)
315, 30sylan2br 286 1 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 820   = wceq 1332  wcel 1481  wne 2309  wral 2417  wrex 2418  cun 3074  c0 3368  ifcif 3479  {csn 3532  cop 3535  cmpt 3997  suc csuc 4295  ωcom 4512  ccnv 4546  dom cdm 4547  cima 4550  wf 5127  ontowfo 5129  1-1-ontowf1o 5130  cfv 5131  (class class class)co 5782  cmpo 5784  freccfrec 6295  pm cpm 6551  0cc0 7644  1c1 7645   + caddc 7647  cmin 7957  cn 8744  0cn0 9001  cz 9078  cuz 9350  seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  ennnfonelemh  11953  ennnfonelem0  11954  ennnfonelemp1  11955  ennnfonelemom  11957
  Copyright terms: Public domain W3C validator