![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemjn | GIF version |
Description: Lemma for ennnfone 12420. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
Ref | Expression |
---|---|
ennnfonelemjn | ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9561 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 0p1e1 9031 | . . . . 5 ⊢ (0 + 1) = 1 | |
3 | 2 | fveq2i 5518 | . . . 4 ⊢ (ℤ≥‘(0 + 1)) = (ℤ≥‘1) |
4 | 1, 3 | eqtr4i 2201 | . . 3 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
5 | 4 | eleq2i 2244 | . 2 ⊢ (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ≥‘(0 + 1))) |
6 | ennnfonelemh.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | eqeq1 2184 | . . . . 5 ⊢ (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0)) | |
8 | fvoveq1 5897 | . . . . 5 ⊢ (𝑥 = 𝑓 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(𝑓 − 1))) | |
9 | 7, 8 | ifbieq2d 3558 | . . . 4 ⊢ (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
10 | nnnn0 9181 | . . . . 5 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0) | |
11 | 10 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0) |
12 | nnne0 8945 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ≠ 0) | |
13 | 12 | neneqd 2368 | . . . . . . 7 ⊢ (𝑓 ∈ ℕ → ¬ 𝑓 = 0) |
14 | 13 | iffalsed 3544 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
15 | 14 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
16 | 0zd 9263 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 0 ∈ ℤ) | |
17 | ennnfonelemh.n | . . . . . . . 8 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
18 | 16, 17 | frec2uzf1od 10403 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
19 | f1ocnv 5474 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→(ℤ≥‘0) → ◡𝑁:(ℤ≥‘0)–1-1-onto→ω) | |
20 | f1of 5461 | . . . . . . 7 ⊢ (◡𝑁:(ℤ≥‘0)–1-1-onto→ω → ◡𝑁:(ℤ≥‘0)⟶ω) | |
21 | 18, 19, 20 | 3syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → ◡𝑁:(ℤ≥‘0)⟶ω) |
22 | 0z 9262 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
23 | 5 | biimpi 120 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
24 | 23 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
25 | eluzp1m1 9549 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ≥‘0)) | |
26 | 22, 24, 25 | sylancr 414 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ≥‘0)) |
27 | 21, 26 | ffvelcdmd 5652 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (◡𝑁‘(𝑓 − 1)) ∈ ω) |
28 | 15, 27 | eqeltrd 2254 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) ∈ ω) |
29 | 6, 9, 11, 28 | fvmptd3 5609 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
30 | 29, 28 | eqeltrd 2254 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) ∈ ω) |
31 | 5, 30 | sylan2br 288 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 ∪ cun 3127 ∅c0 3422 ifcif 3534 {csn 3592 〈cop 3595 ↦ cmpt 4064 suc csuc 4365 ωcom 4589 ◡ccnv 4625 dom cdm 4626 “ cima 4629 ⟶wf 5212 –onto→wfo 5214 –1-1-onto→wf1o 5215 ‘cfv 5216 (class class class)co 5874 ∈ cmpo 5876 freccfrec 6390 ↑pm cpm 6648 0cc0 7810 1c1 7811 + caddc 7813 − cmin 8126 ℕcn 8917 ℕ0cn0 9174 ℤcz 9251 ℤ≥cuz 9526 seqcseq 10442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-recs 6305 df-frec 6391 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-inn 8918 df-n0 9175 df-z 9252 df-uz 9527 |
This theorem is referenced by: ennnfonelemh 12399 ennnfonelem0 12400 ennnfonelemp1 12401 ennnfonelemom 12403 |
Copyright terms: Public domain | W3C validator |