Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemjn | GIF version |
Description: Lemma for ennnfone 12358. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
Ref | Expression |
---|---|
ennnfonelemjn | ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9501 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 0p1e1 8971 | . . . . 5 ⊢ (0 + 1) = 1 | |
3 | 2 | fveq2i 5489 | . . . 4 ⊢ (ℤ≥‘(0 + 1)) = (ℤ≥‘1) |
4 | 1, 3 | eqtr4i 2189 | . . 3 ⊢ ℕ = (ℤ≥‘(0 + 1)) |
5 | 4 | eleq2i 2233 | . 2 ⊢ (𝑓 ∈ ℕ ↔ 𝑓 ∈ (ℤ≥‘(0 + 1))) |
6 | ennnfonelemh.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | eqeq1 2172 | . . . . 5 ⊢ (𝑥 = 𝑓 → (𝑥 = 0 ↔ 𝑓 = 0)) | |
8 | fvoveq1 5865 | . . . . 5 ⊢ (𝑥 = 𝑓 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(𝑓 − 1))) | |
9 | 7, 8 | ifbieq2d 3544 | . . . 4 ⊢ (𝑥 = 𝑓 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
10 | nnnn0 9121 | . . . . 5 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ ℕ0) | |
11 | 10 | adantl 275 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ ℕ0) |
12 | nnne0 8885 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ≠ 0) | |
13 | 12 | neneqd 2357 | . . . . . . 7 ⊢ (𝑓 ∈ ℕ → ¬ 𝑓 = 0) |
14 | 13 | iffalsed 3530 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
15 | 14 | adantl 275 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) = (◡𝑁‘(𝑓 − 1))) |
16 | 0zd 9203 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 0 ∈ ℤ) | |
17 | ennnfonelemh.n | . . . . . . . 8 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
18 | 16, 17 | frec2uzf1od 10341 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
19 | f1ocnv 5445 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→(ℤ≥‘0) → ◡𝑁:(ℤ≥‘0)–1-1-onto→ω) | |
20 | f1of 5432 | . . . . . . 7 ⊢ (◡𝑁:(ℤ≥‘0)–1-1-onto→ω → ◡𝑁:(ℤ≥‘0)⟶ω) | |
21 | 18, 19, 20 | 3syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → ◡𝑁:(ℤ≥‘0)⟶ω) |
22 | 0z 9202 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
23 | 5 | biimpi 119 | . . . . . . . 8 ⊢ (𝑓 ∈ ℕ → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
24 | 23 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → 𝑓 ∈ (ℤ≥‘(0 + 1))) |
25 | eluzp1m1 9489 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝑓 − 1) ∈ (ℤ≥‘0)) | |
26 | 22, 24, 25 | sylancr 411 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝑓 − 1) ∈ (ℤ≥‘0)) |
27 | 21, 26 | ffvelrnd 5621 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (◡𝑁‘(𝑓 − 1)) ∈ ω) |
28 | 15, 27 | eqeltrd 2243 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1))) ∈ ω) |
29 | 6, 9, 11, 28 | fvmptd3 5579 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) = if(𝑓 = 0, ∅, (◡𝑁‘(𝑓 − 1)))) |
30 | 29, 28 | eqeltrd 2243 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (𝐽‘𝑓) ∈ ω) |
31 | 5, 30 | sylan2br 286 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 ∪ cun 3114 ∅c0 3409 ifcif 3520 {csn 3576 〈cop 3579 ↦ cmpt 4043 suc csuc 4343 ωcom 4567 ◡ccnv 4603 dom cdm 4604 “ cima 4607 ⟶wf 5184 –onto→wfo 5186 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 freccfrec 6358 ↑pm cpm 6615 0cc0 7753 1c1 7754 + caddc 7756 − cmin 8069 ℕcn 8857 ℕ0cn0 9114 ℤcz 9191 ℤ≥cuz 9466 seqcseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: ennnfonelemh 12337 ennnfonelem0 12338 ennnfonelemp1 12339 ennnfonelemom 12341 |
Copyright terms: Public domain | W3C validator |