Step | Hyp | Ref
| Expression |
1 | | ennnfonelemp1.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
2 | | nn0uz 9521 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrdi 2263 |
. . . 4
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘0)) |
4 | | ennnfonelemh.dceq |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
5 | | ennnfonelemh.f |
. . . . 5
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
6 | | ennnfonelemh.ne |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
7 | | ennnfonelemh.g |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
8 | | ennnfonelemh.n |
. . . . 5
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
9 | | ennnfonelemh.j |
. . . . 5
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
10 | | ennnfonelemh.h |
. . . . 5
⊢ 𝐻 = seq0(𝐺, 𝐽) |
11 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemj0 12356 |
. . . 4
⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
12 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemg 12358 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
(𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
13 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemjn 12357 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 +
1))) → (𝐽‘𝑓) ∈
ω) |
14 | 3, 11, 12, 13 | seqp1cd 10422 |
. . 3
⊢ (𝜑 → (seq0(𝐺, 𝐽)‘(𝑃 + 1)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1)))) |
15 | 10 | fveq1i 5497 |
. . . 4
⊢ (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1)) |
16 | 15 | a1i 9 |
. . 3
⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1))) |
17 | 10 | fveq1i 5497 |
. . . . 5
⊢ (𝐻‘𝑃) = (seq0(𝐺, 𝐽)‘𝑃) |
18 | 17 | a1i 9 |
. . . 4
⊢ (𝜑 → (𝐻‘𝑃) = (seq0(𝐺, 𝐽)‘𝑃)) |
19 | | eqeq1 2177 |
. . . . . . 7
⊢ (𝑥 = (𝑃 + 1) → (𝑥 = 0 ↔ (𝑃 + 1) = 0)) |
20 | | fvoveq1 5876 |
. . . . . . 7
⊢ (𝑥 = (𝑃 + 1) → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘((𝑃 + 1) − 1))) |
21 | 19, 20 | ifbieq2d 3550 |
. . . . . 6
⊢ (𝑥 = (𝑃 + 1) → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if((𝑃 + 1) = 0, ∅, (◡𝑁‘((𝑃 + 1) − 1)))) |
22 | | peano2nn0 9175 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ0
→ (𝑃 + 1) ∈
ℕ0) |
23 | 1, 22 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝑃 + 1) ∈
ℕ0) |
24 | | nn0p1gt0 9164 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ0
→ 0 < (𝑃 +
1)) |
25 | 24 | gt0ne0d 8431 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ0
→ (𝑃 + 1) ≠
0) |
26 | 25 | neneqd 2361 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℕ0
→ ¬ (𝑃 + 1) =
0) |
27 | 26 | iffalsed 3536 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ0
→ if((𝑃 + 1) = 0,
∅, (◡𝑁‘((𝑃 + 1) − 1))) = (◡𝑁‘((𝑃 + 1) − 1))) |
28 | | nn0cn 9145 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ0
→ 𝑃 ∈
ℂ) |
29 | | 1cnd 7936 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ0
→ 1 ∈ ℂ) |
30 | 28, 29 | pncand 8231 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℕ0
→ ((𝑃 + 1) − 1)
= 𝑃) |
31 | 30 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ0
→ (◡𝑁‘((𝑃 + 1) − 1)) = (◡𝑁‘𝑃)) |
32 | 27, 31 | eqtrd 2203 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ0
→ if((𝑃 + 1) = 0,
∅, (◡𝑁‘((𝑃 + 1) − 1))) = (◡𝑁‘𝑃)) |
33 | 8 | frechashgf1o 10384 |
. . . . . . . . . . 11
⊢ 𝑁:ω–1-1-onto→ℕ0 |
34 | | f1ocnv 5455 |
. . . . . . . . . . 11
⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . . 10
⊢ ◡𝑁:ℕ0–1-1-onto→ω |
36 | | f1of 5442 |
. . . . . . . . . 10
⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) |
37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ0
→ ◡𝑁:ℕ0⟶ω) |
38 | | id 19 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ0
→ 𝑃 ∈
ℕ0) |
39 | 37, 38 | ffvelrnd 5632 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ0
→ (◡𝑁‘𝑃) ∈ ω) |
40 | 32, 39 | eqeltrd 2247 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ0
→ if((𝑃 + 1) = 0,
∅, (◡𝑁‘((𝑃 + 1) − 1))) ∈
ω) |
41 | 1, 40 | syl 14 |
. . . . . 6
⊢ (𝜑 → if((𝑃 + 1) = 0, ∅, (◡𝑁‘((𝑃 + 1) − 1))) ∈
ω) |
42 | 9, 21, 23, 41 | fvmptd3 5589 |
. . . . 5
⊢ (𝜑 → (𝐽‘(𝑃 + 1)) = if((𝑃 + 1) = 0, ∅, (◡𝑁‘((𝑃 + 1) − 1)))) |
43 | 1, 32 | syl 14 |
. . . . 5
⊢ (𝜑 → if((𝑃 + 1) = 0, ∅, (◡𝑁‘((𝑃 + 1) − 1))) = (◡𝑁‘𝑃)) |
44 | 42, 43 | eqtr2d 2204 |
. . . 4
⊢ (𝜑 → (◡𝑁‘𝑃) = (𝐽‘(𝑃 + 1))) |
45 | 18, 44 | oveq12d 5871 |
. . 3
⊢ (𝜑 → ((𝐻‘𝑃)𝐺(◡𝑁‘𝑃)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1)))) |
46 | 14, 16, 45 | 3eqtr4d 2213 |
. 2
⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃)𝐺(◡𝑁‘𝑃))) |
47 | 4, 5, 6, 7, 8, 9, 10 | ennnfonelemh 12359 |
. . . 4
⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm
ω)) |
48 | 47, 1 | ffvelrnd 5632 |
. . 3
⊢ (𝜑 → (𝐻‘𝑃) ∈ (𝐴 ↑pm
ω)) |
49 | 1, 39 | syl 14 |
. . 3
⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
50 | 48 | elexd 2743 |
. . . 4
⊢ (𝜑 → (𝐻‘𝑃) ∈ V) |
51 | | dmexg 4875 |
. . . . . . . 8
⊢ ((𝐻‘𝑃) ∈ V → dom (𝐻‘𝑃) ∈ V) |
52 | 50, 51 | syl 14 |
. . . . . . 7
⊢ (𝜑 → dom (𝐻‘𝑃) ∈ V) |
53 | | fof 5420 |
. . . . . . . . 9
⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) |
54 | 5, 53 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ω⟶𝐴) |
55 | 54, 49 | ffvelrnd 5632 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴) |
56 | | opexg 4213 |
. . . . . . 7
⊢ ((dom
(𝐻‘𝑃) ∈ V ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴) → 〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉 ∈ V) |
57 | 52, 55, 56 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → 〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉 ∈ V) |
58 | | snexg 4170 |
. . . . . 6
⊢
(〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉 ∈ V → {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} ∈ V) |
59 | 57, 58 | syl 14 |
. . . . 5
⊢ (𝜑 → {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} ∈ V) |
60 | | unexg 4428 |
. . . . 5
⊢ (((𝐻‘𝑃) ∈ V ∧ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} ∈ V) → ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) ∈ V) |
61 | 50, 59, 60 | syl2anc 409 |
. . . 4
⊢ (𝜑 → ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) ∈ V) |
62 | 4, 5, 49 | ennnfonelemdc 12354 |
. . . 4
⊢ (𝜑 → DECID
(𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
63 | 50, 61, 62 | ifcldcd 3561 |
. . 3
⊢ (𝜑 → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) ∈ V) |
64 | | id 19 |
. . . . 5
⊢ (𝑥 = (𝐻‘𝑃) → 𝑥 = (𝐻‘𝑃)) |
65 | | dmeq 4811 |
. . . . . . . 8
⊢ (𝑥 = (𝐻‘𝑃) → dom 𝑥 = dom (𝐻‘𝑃)) |
66 | 65 | opeq1d 3771 |
. . . . . . 7
⊢ (𝑥 = (𝐻‘𝑃) → 〈dom 𝑥, (𝐹‘𝑦)〉 = 〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉) |
67 | 66 | sneqd 3596 |
. . . . . 6
⊢ (𝑥 = (𝐻‘𝑃) → {〈dom 𝑥, (𝐹‘𝑦)〉} = {〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉}) |
68 | 64, 67 | uneq12d 3282 |
. . . . 5
⊢ (𝑥 = (𝐻‘𝑃) → (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉})) |
69 | 64, 68 | ifeq12d 3545 |
. . . 4
⊢ (𝑥 = (𝐻‘𝑃) → if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉})) = if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉}))) |
70 | | fveq2 5496 |
. . . . . 6
⊢ (𝑦 = (◡𝑁‘𝑃) → (𝐹‘𝑦) = (𝐹‘(◡𝑁‘𝑃))) |
71 | | imaeq2 4949 |
. . . . . 6
⊢ (𝑦 = (◡𝑁‘𝑃) → (𝐹 “ 𝑦) = (𝐹 “ (◡𝑁‘𝑃))) |
72 | 70, 71 | eleq12d 2241 |
. . . . 5
⊢ (𝑦 = (◡𝑁‘𝑃) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑦) ↔ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) |
73 | 70 | opeq2d 3772 |
. . . . . . 7
⊢ (𝑦 = (◡𝑁‘𝑃) → 〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉 = 〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉) |
74 | 73 | sneqd 3596 |
. . . . . 6
⊢ (𝑦 = (◡𝑁‘𝑃) → {〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉} = {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) |
75 | 74 | uneq2d 3281 |
. . . . 5
⊢ (𝑦 = (◡𝑁‘𝑃) → ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉}) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
76 | 72, 75 | ifbieq2d 3550 |
. . . 4
⊢ (𝑦 = (◡𝑁‘𝑃) → if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘𝑦)〉})) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
77 | 69, 76, 7 | ovmpog 5987 |
. . 3
⊢ (((𝐻‘𝑃) ∈ (𝐴 ↑pm ω) ∧
(◡𝑁‘𝑃) ∈ ω ∧ if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) ∈ V) → ((𝐻‘𝑃)𝐺(◡𝑁‘𝑃)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
78 | 48, 49, 63, 77 | syl3anc 1233 |
. 2
⊢ (𝜑 → ((𝐻‘𝑃)𝐺(◡𝑁‘𝑃)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
79 | 46, 78 | eqtrd 2203 |
1
⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |