ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 GIF version

Theorem ennnfonelemp1 12563
Description: Lemma for ennnfone 12582. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemp1.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemp1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5 (𝜑𝑃 ∈ ℕ0)
2 nn0uz 9627 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2286 . . . 4 (𝜑𝑃 ∈ (ℤ‘0))
4 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
6 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
7 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
8 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
10 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 12558 . . . 4 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
124, 5, 6, 7, 8, 9, 10ennnfonelemg 12560 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 12559 . . . 4 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
143, 11, 12, 13seqp1cd 10541 . . 3 (𝜑 → (seq0(𝐺, 𝐽)‘(𝑃 + 1)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
1510fveq1i 5555 . . . 4 (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1))
1615a1i 9 . . 3 (𝜑 → (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1)))
1710fveq1i 5555 . . . . 5 (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃)
1817a1i 9 . . . 4 (𝜑 → (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃))
19 eqeq1 2200 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑥 = 0 ↔ (𝑃 + 1) = 0))
20 fvoveq1 5941 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑁‘(𝑥 − 1)) = (𝑁‘((𝑃 + 1) − 1)))
2119, 20ifbieq2d 3581 . . . . . 6 (𝑥 = (𝑃 + 1) → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
22 peano2nn0 9280 . . . . . . 7 (𝑃 ∈ ℕ0 → (𝑃 + 1) ∈ ℕ0)
231, 22syl 14 . . . . . 6 (𝜑 → (𝑃 + 1) ∈ ℕ0)
24 nn0p1gt0 9269 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → 0 < (𝑃 + 1))
2524gt0ne0d 8531 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → (𝑃 + 1) ≠ 0)
2625neneqd 2385 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ¬ (𝑃 + 1) = 0)
2726iffalsed 3567 . . . . . . . . 9 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁‘((𝑃 + 1) − 1)))
28 nn0cn 9250 . . . . . . . . . . 11 (𝑃 ∈ ℕ0𝑃 ∈ ℂ)
29 1cnd 8035 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → 1 ∈ ℂ)
3028, 29pncand 8331 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ((𝑃 + 1) − 1) = 𝑃)
3130fveq2d 5558 . . . . . . . . 9 (𝑃 ∈ ℕ0 → (𝑁‘((𝑃 + 1) − 1)) = (𝑁𝑃))
3227, 31eqtrd 2226 . . . . . . . 8 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
338frechashgf1o 10499 . . . . . . . . . . 11 𝑁:ω–1-1-onto→ℕ0
34 f1ocnv 5513 . . . . . . . . . . 11 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
3533, 34ax-mp 5 . . . . . . . . . 10 𝑁:ℕ01-1-onto→ω
36 f1of 5500 . . . . . . . . . 10 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
3735, 36mp1i 10 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑁:ℕ0⟶ω)
38 id 19 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑃 ∈ ℕ0)
3937, 38ffvelcdmd 5694 . . . . . . . 8 (𝑃 ∈ ℕ0 → (𝑁𝑃) ∈ ω)
4032, 39eqeltrd 2270 . . . . . . 7 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
411, 40syl 14 . . . . . 6 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
429, 21, 23, 41fvmptd3 5651 . . . . 5 (𝜑 → (𝐽‘(𝑃 + 1)) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
431, 32syl 14 . . . . 5 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
4442, 43eqtr2d 2227 . . . 4 (𝜑 → (𝑁𝑃) = (𝐽‘(𝑃 + 1)))
4518, 44oveq12d 5936 . . 3 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
4614, 16, 453eqtr4d 2236 . 2 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃)𝐺(𝑁𝑃)))
474, 5, 6, 7, 8, 9, 10ennnfonelemh 12561 . . . 4 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
4847, 1ffvelcdmd 5694 . . 3 (𝜑 → (𝐻𝑃) ∈ (𝐴pm ω))
491, 39syl 14 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
5048elexd 2773 . . . 4 (𝜑 → (𝐻𝑃) ∈ V)
51 dmexg 4926 . . . . . . . 8 ((𝐻𝑃) ∈ V → dom (𝐻𝑃) ∈ V)
5250, 51syl 14 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ V)
53 fof 5476 . . . . . . . . 9 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
545, 53syl 14 . . . . . . . 8 (𝜑𝐹:ω⟶𝐴)
5554, 49ffvelcdmd 5694 . . . . . . 7 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
56 opexg 4257 . . . . . . 7 ((dom (𝐻𝑃) ∈ V ∧ (𝐹‘(𝑁𝑃)) ∈ 𝐴) → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
5752, 55, 56syl2anc 411 . . . . . 6 (𝜑 → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
58 snexg 4213 . . . . . 6 (⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
5957, 58syl 14 . . . . 5 (𝜑 → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
60 unexg 4474 . . . . 5 (((𝐻𝑃) ∈ V ∧ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
6150, 59, 60syl2anc 411 . . . 4 (𝜑 → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
624, 5, 49ennnfonelemdc 12556 . . . 4 (𝜑DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
6350, 61, 62ifcldcd 3593 . . 3 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V)
64 id 19 . . . . 5 (𝑥 = (𝐻𝑃) → 𝑥 = (𝐻𝑃))
65 dmeq 4862 . . . . . . . 8 (𝑥 = (𝐻𝑃) → dom 𝑥 = dom (𝐻𝑃))
6665opeq1d 3810 . . . . . . 7 (𝑥 = (𝐻𝑃) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹𝑦)⟩)
6766sneqd 3631 . . . . . 6 (𝑥 = (𝐻𝑃) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})
6864, 67uneq12d 3314 . . . . 5 (𝑥 = (𝐻𝑃) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}))
6964, 68ifeq12d 3576 . . . 4 (𝑥 = (𝐻𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})))
70 fveq2 5554 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹‘(𝑁𝑃)))
71 imaeq2 5001 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹 “ (𝑁𝑃)))
7270, 71eleq12d 2264 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
7370opeq2d 3811 . . . . . . 7 (𝑦 = (𝑁𝑃) → ⟨dom (𝐻𝑃), (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩)
7473sneqd 3631 . . . . . 6 (𝑦 = (𝑁𝑃) → {⟨dom (𝐻𝑃), (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
7574uneq2d 3313 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
7672, 75ifbieq2d 3581 . . . 4 (𝑦 = (𝑁𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7769, 76, 7ovmpog 6053 . . 3 (((𝐻𝑃) ∈ (𝐴pm ω) ∧ (𝑁𝑃) ∈ ω ∧ if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V) → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7848, 49, 63, 77syl3anc 1249 . 2 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7946, 78eqtrd 2226 1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  cun 3151  c0 3446  ifcif 3557  {csn 3618  cop 3621  cmpt 4090  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  cima 4662  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  freccfrec 6443  pm cpm 6703  0cc0 7872  1c1 7873   + caddc 7875  cmin 8190  0cn0 9240  cz 9317  cuz 9592  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pm 6705  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519
This theorem is referenced by:  ennnfonelem1  12564  ennnfonelemhdmp1  12566  ennnfonelemss  12567  ennnfonelemkh  12569  ennnfonelemhf1o  12570
  Copyright terms: Public domain W3C validator