ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 GIF version

Theorem ennnfonelemp1 11764
Description: Lemma for ennnfone 11783. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemp1.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemp1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5 (𝜑𝑃 ∈ ℕ0)
2 nn0uz 9262 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2207 . . . 4 (𝜑𝑃 ∈ (ℤ‘0))
4 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
6 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
7 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
8 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
10 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 11759 . . . 4 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
124, 5, 6, 7, 8, 9, 10ennnfonelemg 11761 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 11760 . . . 4 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
143, 11, 12, 13seqp1cd 10132 . . 3 (𝜑 → (seq0(𝐺, 𝐽)‘(𝑃 + 1)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
1510fveq1i 5376 . . . 4 (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1))
1615a1i 9 . . 3 (𝜑 → (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1)))
1710fveq1i 5376 . . . . 5 (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃)
1817a1i 9 . . . 4 (𝜑 → (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃))
19 eqeq1 2121 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑥 = 0 ↔ (𝑃 + 1) = 0))
20 fvoveq1 5751 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑁‘(𝑥 − 1)) = (𝑁‘((𝑃 + 1) − 1)))
2119, 20ifbieq2d 3462 . . . . . 6 (𝑥 = (𝑃 + 1) → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
22 peano2nn0 8921 . . . . . . 7 (𝑃 ∈ ℕ0 → (𝑃 + 1) ∈ ℕ0)
231, 22syl 14 . . . . . 6 (𝜑 → (𝑃 + 1) ∈ ℕ0)
24 nn0p1gt0 8910 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → 0 < (𝑃 + 1))
2524gt0ne0d 8193 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → (𝑃 + 1) ≠ 0)
2625neneqd 2303 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ¬ (𝑃 + 1) = 0)
2726iffalsed 3450 . . . . . . . . 9 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁‘((𝑃 + 1) − 1)))
28 nn0cn 8891 . . . . . . . . . . 11 (𝑃 ∈ ℕ0𝑃 ∈ ℂ)
29 1cnd 7706 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → 1 ∈ ℂ)
3028, 29pncand 7997 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ((𝑃 + 1) − 1) = 𝑃)
3130fveq2d 5379 . . . . . . . . 9 (𝑃 ∈ ℕ0 → (𝑁‘((𝑃 + 1) − 1)) = (𝑁𝑃))
3227, 31eqtrd 2147 . . . . . . . 8 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
338frechashgf1o 10094 . . . . . . . . . . 11 𝑁:ω–1-1-onto→ℕ0
34 f1ocnv 5336 . . . . . . . . . . 11 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
3533, 34ax-mp 7 . . . . . . . . . 10 𝑁:ℕ01-1-onto→ω
36 f1of 5323 . . . . . . . . . 10 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
3735, 36mp1i 10 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑁:ℕ0⟶ω)
38 id 19 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑃 ∈ ℕ0)
3937, 38ffvelrnd 5510 . . . . . . . 8 (𝑃 ∈ ℕ0 → (𝑁𝑃) ∈ ω)
4032, 39eqeltrd 2191 . . . . . . 7 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
411, 40syl 14 . . . . . 6 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
429, 21, 23, 41fvmptd3 5468 . . . . 5 (𝜑 → (𝐽‘(𝑃 + 1)) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
431, 32syl 14 . . . . 5 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
4442, 43eqtr2d 2148 . . . 4 (𝜑 → (𝑁𝑃) = (𝐽‘(𝑃 + 1)))
4518, 44oveq12d 5746 . . 3 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
4614, 16, 453eqtr4d 2157 . 2 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃)𝐺(𝑁𝑃)))
474, 5, 6, 7, 8, 9, 10ennnfonelemh 11762 . . . 4 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
4847, 1ffvelrnd 5510 . . 3 (𝜑 → (𝐻𝑃) ∈ (𝐴pm ω))
491, 39syl 14 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
5048elexd 2670 . . . 4 (𝜑 → (𝐻𝑃) ∈ V)
51 dmexg 4761 . . . . . . . 8 ((𝐻𝑃) ∈ V → dom (𝐻𝑃) ∈ V)
5250, 51syl 14 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ V)
53 fof 5303 . . . . . . . . 9 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
545, 53syl 14 . . . . . . . 8 (𝜑𝐹:ω⟶𝐴)
5554, 49ffvelrnd 5510 . . . . . . 7 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
56 opexg 4110 . . . . . . 7 ((dom (𝐻𝑃) ∈ V ∧ (𝐹‘(𝑁𝑃)) ∈ 𝐴) → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
5752, 55, 56syl2anc 406 . . . . . 6 (𝜑 → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
58 snexg 4068 . . . . . 6 (⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
5957, 58syl 14 . . . . 5 (𝜑 → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
60 unexg 4324 . . . . 5 (((𝐻𝑃) ∈ V ∧ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
6150, 59, 60syl2anc 406 . . . 4 (𝜑 → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
624, 5, 49ennnfonelemdc 11757 . . . 4 (𝜑DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
6350, 61, 62ifcldcd 3473 . . 3 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V)
64 id 19 . . . . 5 (𝑥 = (𝐻𝑃) → 𝑥 = (𝐻𝑃))
65 dmeq 4699 . . . . . . . 8 (𝑥 = (𝐻𝑃) → dom 𝑥 = dom (𝐻𝑃))
6665opeq1d 3677 . . . . . . 7 (𝑥 = (𝐻𝑃) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹𝑦)⟩)
6766sneqd 3506 . . . . . 6 (𝑥 = (𝐻𝑃) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})
6864, 67uneq12d 3197 . . . . 5 (𝑥 = (𝐻𝑃) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}))
6964, 68ifeq12d 3457 . . . 4 (𝑥 = (𝐻𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})))
70 fveq2 5375 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹‘(𝑁𝑃)))
71 imaeq2 4835 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹 “ (𝑁𝑃)))
7270, 71eleq12d 2185 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
7370opeq2d 3678 . . . . . . 7 (𝑦 = (𝑁𝑃) → ⟨dom (𝐻𝑃), (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩)
7473sneqd 3506 . . . . . 6 (𝑦 = (𝑁𝑃) → {⟨dom (𝐻𝑃), (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
7574uneq2d 3196 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
7672, 75ifbieq2d 3462 . . . 4 (𝑦 = (𝑁𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7769, 76, 7ovmpog 5859 . . 3 (((𝐻𝑃) ∈ (𝐴pm ω) ∧ (𝑁𝑃) ∈ ω ∧ if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V) → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7848, 49, 63, 77syl3anc 1199 . 2 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7946, 78eqtrd 2147 1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 802   = wceq 1314  wcel 1463  wne 2282  wral 2390  wrex 2391  {crab 2394  Vcvv 2657  cun 3035  c0 3329  ifcif 3440  {csn 3493  cop 3496  cmpt 3949  suc csuc 4247  ωcom 4464  ccnv 4498  dom cdm 4499  cima 4502  wf 5077  ontowfo 5079  1-1-ontowf1o 5080  cfv 5081  (class class class)co 5728  cmpo 5730  freccfrec 6241  pm cpm 6497  0cc0 7547  1c1 7548   + caddc 7550  cmin 7856  0cn0 8881  cz 8958  cuz 9228  seqcseq 10111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-pm 6499  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-seqfrec 10112
This theorem is referenced by:  ennnfonelem1  11765  ennnfonelemhdmp1  11767  ennnfonelemss  11768  ennnfonelemkh  11770  ennnfonelemhf1o  11771
  Copyright terms: Public domain W3C validator