ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 GIF version

Theorem ennnfonelemp1 12276
Description: Lemma for ennnfone 12295. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemp1.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemp1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5 (𝜑𝑃 ∈ ℕ0)
2 nn0uz 9491 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2257 . . . 4 (𝜑𝑃 ∈ (ℤ‘0))
4 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
6 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
7 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
8 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
10 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 12271 . . . 4 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
124, 5, 6, 7, 8, 9, 10ennnfonelemg 12273 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 12272 . . . 4 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
143, 11, 12, 13seqp1cd 10391 . . 3 (𝜑 → (seq0(𝐺, 𝐽)‘(𝑃 + 1)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
1510fveq1i 5481 . . . 4 (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1))
1615a1i 9 . . 3 (𝜑 → (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1)))
1710fveq1i 5481 . . . . 5 (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃)
1817a1i 9 . . . 4 (𝜑 → (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃))
19 eqeq1 2171 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑥 = 0 ↔ (𝑃 + 1) = 0))
20 fvoveq1 5859 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑁‘(𝑥 − 1)) = (𝑁‘((𝑃 + 1) − 1)))
2119, 20ifbieq2d 3539 . . . . . 6 (𝑥 = (𝑃 + 1) → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
22 peano2nn0 9145 . . . . . . 7 (𝑃 ∈ ℕ0 → (𝑃 + 1) ∈ ℕ0)
231, 22syl 14 . . . . . 6 (𝜑 → (𝑃 + 1) ∈ ℕ0)
24 nn0p1gt0 9134 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → 0 < (𝑃 + 1))
2524gt0ne0d 8401 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → (𝑃 + 1) ≠ 0)
2625neneqd 2355 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ¬ (𝑃 + 1) = 0)
2726iffalsed 3525 . . . . . . . . 9 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁‘((𝑃 + 1) − 1)))
28 nn0cn 9115 . . . . . . . . . . 11 (𝑃 ∈ ℕ0𝑃 ∈ ℂ)
29 1cnd 7906 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → 1 ∈ ℂ)
3028, 29pncand 8201 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ((𝑃 + 1) − 1) = 𝑃)
3130fveq2d 5484 . . . . . . . . 9 (𝑃 ∈ ℕ0 → (𝑁‘((𝑃 + 1) − 1)) = (𝑁𝑃))
3227, 31eqtrd 2197 . . . . . . . 8 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
338frechashgf1o 10353 . . . . . . . . . . 11 𝑁:ω–1-1-onto→ℕ0
34 f1ocnv 5439 . . . . . . . . . . 11 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
3533, 34ax-mp 5 . . . . . . . . . 10 𝑁:ℕ01-1-onto→ω
36 f1of 5426 . . . . . . . . . 10 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
3735, 36mp1i 10 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑁:ℕ0⟶ω)
38 id 19 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑃 ∈ ℕ0)
3937, 38ffvelrnd 5615 . . . . . . . 8 (𝑃 ∈ ℕ0 → (𝑁𝑃) ∈ ω)
4032, 39eqeltrd 2241 . . . . . . 7 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
411, 40syl 14 . . . . . 6 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
429, 21, 23, 41fvmptd3 5573 . . . . 5 (𝜑 → (𝐽‘(𝑃 + 1)) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
431, 32syl 14 . . . . 5 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
4442, 43eqtr2d 2198 . . . 4 (𝜑 → (𝑁𝑃) = (𝐽‘(𝑃 + 1)))
4518, 44oveq12d 5854 . . 3 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
4614, 16, 453eqtr4d 2207 . 2 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃)𝐺(𝑁𝑃)))
474, 5, 6, 7, 8, 9, 10ennnfonelemh 12274 . . . 4 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
4847, 1ffvelrnd 5615 . . 3 (𝜑 → (𝐻𝑃) ∈ (𝐴pm ω))
491, 39syl 14 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
5048elexd 2734 . . . 4 (𝜑 → (𝐻𝑃) ∈ V)
51 dmexg 4862 . . . . . . . 8 ((𝐻𝑃) ∈ V → dom (𝐻𝑃) ∈ V)
5250, 51syl 14 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ V)
53 fof 5404 . . . . . . . . 9 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
545, 53syl 14 . . . . . . . 8 (𝜑𝐹:ω⟶𝐴)
5554, 49ffvelrnd 5615 . . . . . . 7 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
56 opexg 4200 . . . . . . 7 ((dom (𝐻𝑃) ∈ V ∧ (𝐹‘(𝑁𝑃)) ∈ 𝐴) → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
5752, 55, 56syl2anc 409 . . . . . 6 (𝜑 → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
58 snexg 4157 . . . . . 6 (⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
5957, 58syl 14 . . . . 5 (𝜑 → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
60 unexg 4415 . . . . 5 (((𝐻𝑃) ∈ V ∧ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
6150, 59, 60syl2anc 409 . . . 4 (𝜑 → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
624, 5, 49ennnfonelemdc 12269 . . . 4 (𝜑DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
6350, 61, 62ifcldcd 3550 . . 3 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V)
64 id 19 . . . . 5 (𝑥 = (𝐻𝑃) → 𝑥 = (𝐻𝑃))
65 dmeq 4798 . . . . . . . 8 (𝑥 = (𝐻𝑃) → dom 𝑥 = dom (𝐻𝑃))
6665opeq1d 3758 . . . . . . 7 (𝑥 = (𝐻𝑃) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹𝑦)⟩)
6766sneqd 3583 . . . . . 6 (𝑥 = (𝐻𝑃) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})
6864, 67uneq12d 3272 . . . . 5 (𝑥 = (𝐻𝑃) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}))
6964, 68ifeq12d 3534 . . . 4 (𝑥 = (𝐻𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})))
70 fveq2 5480 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹‘(𝑁𝑃)))
71 imaeq2 4936 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹 “ (𝑁𝑃)))
7270, 71eleq12d 2235 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
7370opeq2d 3759 . . . . . . 7 (𝑦 = (𝑁𝑃) → ⟨dom (𝐻𝑃), (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩)
7473sneqd 3583 . . . . . 6 (𝑦 = (𝑁𝑃) → {⟨dom (𝐻𝑃), (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
7574uneq2d 3271 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
7672, 75ifbieq2d 3539 . . . 4 (𝑦 = (𝑁𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7769, 76, 7ovmpog 5967 . . 3 (((𝐻𝑃) ∈ (𝐴pm ω) ∧ (𝑁𝑃) ∈ ω ∧ if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V) → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7848, 49, 63, 77syl3anc 1227 . 2 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7946, 78eqtrd 2197 1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 824   = wceq 1342  wcel 2135  wne 2334  wral 2442  wrex 2443  {crab 2446  Vcvv 2721  cun 3109  c0 3404  ifcif 3515  {csn 3570  cop 3573  cmpt 4037  suc csuc 4337  ωcom 4561  ccnv 4597  dom cdm 4598  cima 4601  wf 5178  ontowfo 5180  1-1-ontowf1o 5181  cfv 5182  (class class class)co 5836  cmpo 5838  freccfrec 6349  pm cpm 6606  0cc0 7744  1c1 7745   + caddc 7747  cmin 8060  0cn0 9105  cz 9182  cuz 9457  seqcseq 10370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pm 6608  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371
This theorem is referenced by:  ennnfonelem1  12277  ennnfonelemhdmp1  12279  ennnfonelemss  12280  ennnfonelemkh  12282  ennnfonelemhf1o  12283
  Copyright terms: Public domain W3C validator