ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemp1 GIF version

Theorem ennnfonelemp1 12390
Description: Lemma for ennnfone 12409. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemp1.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemp1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemp1.p . . . . 5 (𝜑𝑃 ∈ ℕ0)
2 nn0uz 9551 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2270 . . . 4 (𝜑𝑃 ∈ (ℤ‘0))
4 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
6 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
7 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
8 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
10 ennnfonelemh.h . . . . 5 𝐻 = seq0(𝐺, 𝐽)
114, 5, 6, 7, 8, 9, 10ennnfonelemj0 12385 . . . 4 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
124, 5, 6, 7, 8, 9, 10ennnfonelemg 12387 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
134, 5, 6, 7, 8, 9, 10ennnfonelemjn 12386 . . . 4 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
143, 11, 12, 13seqp1cd 10452 . . 3 (𝜑 → (seq0(𝐺, 𝐽)‘(𝑃 + 1)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
1510fveq1i 5512 . . . 4 (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1))
1615a1i 9 . . 3 (𝜑 → (𝐻‘(𝑃 + 1)) = (seq0(𝐺, 𝐽)‘(𝑃 + 1)))
1710fveq1i 5512 . . . . 5 (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃)
1817a1i 9 . . . 4 (𝜑 → (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃))
19 eqeq1 2184 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑥 = 0 ↔ (𝑃 + 1) = 0))
20 fvoveq1 5892 . . . . . . 7 (𝑥 = (𝑃 + 1) → (𝑁‘(𝑥 − 1)) = (𝑁‘((𝑃 + 1) − 1)))
2119, 20ifbieq2d 3558 . . . . . 6 (𝑥 = (𝑃 + 1) → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
22 peano2nn0 9205 . . . . . . 7 (𝑃 ∈ ℕ0 → (𝑃 + 1) ∈ ℕ0)
231, 22syl 14 . . . . . 6 (𝜑 → (𝑃 + 1) ∈ ℕ0)
24 nn0p1gt0 9194 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → 0 < (𝑃 + 1))
2524gt0ne0d 8459 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → (𝑃 + 1) ≠ 0)
2625neneqd 2368 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ¬ (𝑃 + 1) = 0)
2726iffalsed 3544 . . . . . . . . 9 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁‘((𝑃 + 1) − 1)))
28 nn0cn 9175 . . . . . . . . . . 11 (𝑃 ∈ ℕ0𝑃 ∈ ℂ)
29 1cnd 7964 . . . . . . . . . . 11 (𝑃 ∈ ℕ0 → 1 ∈ ℂ)
3028, 29pncand 8259 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → ((𝑃 + 1) − 1) = 𝑃)
3130fveq2d 5515 . . . . . . . . 9 (𝑃 ∈ ℕ0 → (𝑁‘((𝑃 + 1) − 1)) = (𝑁𝑃))
3227, 31eqtrd 2210 . . . . . . . 8 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
338frechashgf1o 10414 . . . . . . . . . . 11 𝑁:ω–1-1-onto→ℕ0
34 f1ocnv 5470 . . . . . . . . . . 11 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
3533, 34ax-mp 5 . . . . . . . . . 10 𝑁:ℕ01-1-onto→ω
36 f1of 5457 . . . . . . . . . 10 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
3735, 36mp1i 10 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑁:ℕ0⟶ω)
38 id 19 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑃 ∈ ℕ0)
3937, 38ffvelcdmd 5648 . . . . . . . 8 (𝑃 ∈ ℕ0 → (𝑁𝑃) ∈ ω)
4032, 39eqeltrd 2254 . . . . . . 7 (𝑃 ∈ ℕ0 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
411, 40syl 14 . . . . . 6 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) ∈ ω)
429, 21, 23, 41fvmptd3 5605 . . . . 5 (𝜑 → (𝐽‘(𝑃 + 1)) = if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))))
431, 32syl 14 . . . . 5 (𝜑 → if((𝑃 + 1) = 0, ∅, (𝑁‘((𝑃 + 1) − 1))) = (𝑁𝑃))
4442, 43eqtr2d 2211 . . . 4 (𝜑 → (𝑁𝑃) = (𝐽‘(𝑃 + 1)))
4518, 44oveq12d 5887 . . 3 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = ((seq0(𝐺, 𝐽)‘𝑃)𝐺(𝐽‘(𝑃 + 1))))
4614, 16, 453eqtr4d 2220 . 2 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃)𝐺(𝑁𝑃)))
474, 5, 6, 7, 8, 9, 10ennnfonelemh 12388 . . . 4 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
4847, 1ffvelcdmd 5648 . . 3 (𝜑 → (𝐻𝑃) ∈ (𝐴pm ω))
491, 39syl 14 . . 3 (𝜑 → (𝑁𝑃) ∈ ω)
5048elexd 2750 . . . 4 (𝜑 → (𝐻𝑃) ∈ V)
51 dmexg 4887 . . . . . . . 8 ((𝐻𝑃) ∈ V → dom (𝐻𝑃) ∈ V)
5250, 51syl 14 . . . . . . 7 (𝜑 → dom (𝐻𝑃) ∈ V)
53 fof 5434 . . . . . . . . 9 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
545, 53syl 14 . . . . . . . 8 (𝜑𝐹:ω⟶𝐴)
5554, 49ffvelcdmd 5648 . . . . . . 7 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
56 opexg 4225 . . . . . . 7 ((dom (𝐻𝑃) ∈ V ∧ (𝐹‘(𝑁𝑃)) ∈ 𝐴) → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
5752, 55, 56syl2anc 411 . . . . . 6 (𝜑 → ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V)
58 snexg 4181 . . . . . 6 (⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩ ∈ V → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
5957, 58syl 14 . . . . 5 (𝜑 → {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V)
60 unexg 4440 . . . . 5 (((𝐻𝑃) ∈ V ∧ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} ∈ V) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
6150, 59, 60syl2anc 411 . . . 4 (𝜑 → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) ∈ V)
624, 5, 49ennnfonelemdc 12383 . . . 4 (𝜑DECID (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
6350, 61, 62ifcldcd 3569 . . 3 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V)
64 id 19 . . . . 5 (𝑥 = (𝐻𝑃) → 𝑥 = (𝐻𝑃))
65 dmeq 4823 . . . . . . . 8 (𝑥 = (𝐻𝑃) → dom 𝑥 = dom (𝐻𝑃))
6665opeq1d 3782 . . . . . . 7 (𝑥 = (𝐻𝑃) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹𝑦)⟩)
6766sneqd 3604 . . . . . 6 (𝑥 = (𝐻𝑃) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})
6864, 67uneq12d 3290 . . . . 5 (𝑥 = (𝐻𝑃) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}))
6964, 68ifeq12d 3553 . . . 4 (𝑥 = (𝐻𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})))
70 fveq2 5511 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹‘(𝑁𝑃)))
71 imaeq2 4962 . . . . . 6 (𝑦 = (𝑁𝑃) → (𝐹𝑦) = (𝐹 “ (𝑁𝑃)))
7270, 71eleq12d 2248 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃))))
7370opeq2d 3783 . . . . . . 7 (𝑦 = (𝑁𝑃) → ⟨dom (𝐻𝑃), (𝐹𝑦)⟩ = ⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩)
7473sneqd 3604 . . . . . 6 (𝑦 = (𝑁𝑃) → {⟨dom (𝐻𝑃), (𝐹𝑦)⟩} = {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
7574uneq2d 3289 . . . . 5 (𝑦 = (𝑁𝑃) → ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩}) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
7672, 75ifbieq2d 3558 . . . 4 (𝑦 = (𝑁𝑃) → if((𝐹𝑦) ∈ (𝐹𝑦), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹𝑦)⟩})) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7769, 76, 7ovmpog 6003 . . 3 (((𝐻𝑃) ∈ (𝐴pm ω) ∧ (𝑁𝑃) ∈ ω ∧ if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) ∈ V) → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7848, 49, 63, 77syl3anc 1238 . 2 (𝜑 → ((𝐻𝑃)𝐺(𝑁𝑃)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
7946, 78eqtrd 2210 1 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  {crab 2459  Vcvv 2737  cun 3127  c0 3422  ifcif 3534  {csn 3591  cop 3594  cmpt 4061  suc csuc 4362  ωcom 4586  ccnv 4622  dom cdm 4623  cima 4626  wf 5208  ontowfo 5210  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  cmpo 5871  freccfrec 6385  pm cpm 6643  0cc0 7802  1c1 7803   + caddc 7805  cmin 8118  0cn0 9165  cz 9242  cuz 9517  seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pm 6645  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432
This theorem is referenced by:  ennnfonelem1  12391  ennnfonelemhdmp1  12393  ennnfonelemss  12394  ennnfonelemkh  12396  ennnfonelemhf1o  12397
  Copyright terms: Public domain W3C validator