ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid GIF version

Theorem grpressid 13193
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12749. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
grpressid (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)

Proof of Theorem grpressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3372 . . 3 (𝐵𝐵) = 𝐵
2 eqidd 2197 . . . 4 (𝐺 ∈ Grp → (𝐺s 𝐵) = (𝐺s 𝐵))
3 grpressid.b . . . . 5 𝐵 = (Base‘𝐺)
43a1i 9 . . . 4 (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺))
5 id 19 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
6 basfn 12736 . . . . . 6 Base Fn V
7 elex 2774 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
8 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
98funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
106, 7, 9sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
113, 10eqeltrid 2283 . . . 4 (𝐺 ∈ Grp → 𝐵 ∈ V)
122, 4, 5, 11ressbasd 12745 . . 3 (𝐺 ∈ Grp → (𝐵𝐵) = (Base‘(𝐺s 𝐵)))
131, 12eqtr3id 2243 . 2 (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺s 𝐵)))
14 eqidd 2197 . . 3 (𝐺 ∈ Grp → (+g𝐺) = (+g𝐺))
152, 14, 11, 7ressplusgd 12806 . 2 (𝐺 ∈ Grp → (+g𝐺) = (+g‘(𝐺s 𝐵)))
16 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
173, 16grpcl 13140 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
183, 16grpass 13141 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
19 eqid 2196 . . 3 (0g𝐺) = (0g𝐺)
203, 19grpidcl 13161 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
213, 16, 19grplid 13163 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
22 eqid 2196 . . 3 (invg𝐺) = (invg𝐺)
233, 22grpinvcl 13180 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
243, 16, 19, 22grplinv 13182 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13155 1 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132  invgcminusg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136
This theorem is referenced by:  subgid  13305  ablressid  13465  ringressid  13619
  Copyright terms: Public domain W3C validator