| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpressid | GIF version | ||
| Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12947. (Contributed by Jim Kingdon, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| grpressid.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grpressid | ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 3383 | . . 3 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 2 | eqidd 2207 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
| 3 | grpressid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) |
| 5 | id 19 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 6 | basfn 12934 | . . . . . 6 ⊢ Base Fn V | |
| 7 | elex 2784 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
| 8 | funfvex 5600 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 9 | 8 | funfni 5381 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 10 | 6, 7, 9 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) |
| 11 | 3, 10 | eqeltrid 2293 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) |
| 12 | 2, 4, 5, 11 | ressbasd 12943 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐵 ∩ 𝐵) = (Base‘(𝐺 ↾s 𝐵))) |
| 13 | 1, 12 | eqtr3id 2253 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
| 14 | eqidd 2207 | . . 3 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘𝐺)) | |
| 15 | 2, 14, 11, 7 | ressplusgd 13005 | . 2 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
| 16 | eqid 2206 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 3, 16 | grpcl 13384 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 18 | 3, 16 | grpass 13385 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 19 | eqid 2206 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | 3, 19 | grpidcl 13405 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 21 | 3, 16, 19 | grplid 13407 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
| 22 | eqid 2206 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 23 | 3, 22 | grpinvcl 13424 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 24 | 3, 16, 19, 22 | grplinv 13426 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
| 25 | 13, 15, 17, 18, 20, 21, 23, 24 | isgrpd 13399 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3166 Fn wfn 5271 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 ↾s cress 12877 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 invgcminusg 13377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 |
| This theorem is referenced by: subgid 13555 ablressid 13715 ringressid 13869 |
| Copyright terms: Public domain | W3C validator |