ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid GIF version

Theorem grpressid 13560
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 13070. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
grpressid (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)

Proof of Theorem grpressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3393 . . 3 (𝐵𝐵) = 𝐵
2 eqidd 2210 . . . 4 (𝐺 ∈ Grp → (𝐺s 𝐵) = (𝐺s 𝐵))
3 grpressid.b . . . . 5 𝐵 = (Base‘𝐺)
43a1i 9 . . . 4 (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺))
5 id 19 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
6 basfn 13057 . . . . . 6 Base Fn V
7 elex 2791 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
8 funfvex 5620 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
98funfni 5399 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
106, 7, 9sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
113, 10eqeltrid 2296 . . . 4 (𝐺 ∈ Grp → 𝐵 ∈ V)
122, 4, 5, 11ressbasd 13066 . . 3 (𝐺 ∈ Grp → (𝐵𝐵) = (Base‘(𝐺s 𝐵)))
131, 12eqtr3id 2256 . 2 (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺s 𝐵)))
14 eqidd 2210 . . 3 (𝐺 ∈ Grp → (+g𝐺) = (+g𝐺))
152, 14, 11, 7ressplusgd 13128 . 2 (𝐺 ∈ Grp → (+g𝐺) = (+g‘(𝐺s 𝐵)))
16 eqid 2209 . . 3 (+g𝐺) = (+g𝐺)
173, 16grpcl 13507 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
183, 16grpass 13508 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
19 eqid 2209 . . 3 (0g𝐺) = (0g𝐺)
203, 19grpidcl 13528 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
213, 16, 19grplid 13530 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
22 eqid 2209 . . 3 (invg𝐺) = (invg𝐺)
233, 22grpinvcl 13547 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
243, 16, 19, 22grplinv 13549 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13522 1 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  Vcvv 2779  cin 3176   Fn wfn 5289  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  +gcplusg 13076  0gc0g 13255  Grpcgrp 13499  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503
This theorem is referenced by:  subgid  13678  ablressid  13838  ringressid  13992
  Copyright terms: Public domain W3C validator