| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpressid | GIF version | ||
| Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 13112. (Contributed by Jim Kingdon, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| grpressid.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grpressid | ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 3413 | . . 3 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 2 | eqidd 2230 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
| 3 | grpressid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) |
| 5 | id 19 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 6 | basfn 13099 | . . . . . 6 ⊢ Base Fn V | |
| 7 | elex 2811 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
| 8 | funfvex 5646 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 9 | 8 | funfni 5423 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 10 | 6, 7, 9 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) |
| 11 | 3, 10 | eqeltrid 2316 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) |
| 12 | 2, 4, 5, 11 | ressbasd 13108 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐵 ∩ 𝐵) = (Base‘(𝐺 ↾s 𝐵))) |
| 13 | 1, 12 | eqtr3id 2276 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
| 14 | eqidd 2230 | . . 3 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘𝐺)) | |
| 15 | 2, 14, 11, 7 | ressplusgd 13170 | . 2 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
| 16 | eqid 2229 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 3, 16 | grpcl 13549 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 18 | 3, 16 | grpass 13550 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 19 | eqid 2229 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | 3, 19 | grpidcl 13570 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 21 | 3, 16, 19 | grplid 13572 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
| 22 | eqid 2229 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 23 | 3, 22 | grpinvcl 13589 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 24 | 3, 16, 19, 22 | grplinv 13591 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
| 25 | 13, 15, 17, 18, 20, 21, 23, 24 | isgrpd 13564 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 ↾s cress 13041 +gcplusg 13118 0gc0g 13297 Grpcgrp 13541 invgcminusg 13542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 |
| This theorem is referenced by: subgid 13720 ablressid 13880 ringressid 14034 |
| Copyright terms: Public domain | W3C validator |