![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpressid | GIF version |
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12532. (Contributed by Jim Kingdon, 28-Feb-2025.) |
Ref | Expression |
---|---|
grpressid.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
grpressid | ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3346 | . . 3 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
2 | eqidd 2178 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
3 | grpressid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) |
5 | id 19 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
6 | basfn 12522 | . . . . . 6 ⊢ Base Fn V | |
7 | elex 2750 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
8 | funfvex 5534 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
9 | 8 | funfni 5318 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
10 | 6, 7, 9 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) |
11 | 3, 10 | eqeltrid 2264 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) |
12 | 2, 4, 5, 11 | ressbasd 12529 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐵 ∩ 𝐵) = (Base‘(𝐺 ↾s 𝐵))) |
13 | 1, 12 | eqtr3id 2224 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
14 | eqidd 2178 | . . 3 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘𝐺)) | |
15 | 2, 14, 11, 7 | ressplusgd 12589 | . 2 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
16 | eqid 2177 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 3, 16 | grpcl 12890 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
18 | 3, 16 | grpass 12891 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
19 | eqid 2177 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
20 | 3, 19 | grpidcl 12909 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
21 | 3, 16, 19 | grplid 12911 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
22 | eqid 2177 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
23 | 3, 22 | grpinvcl 12926 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
24 | 3, 16, 19, 22 | grplinv 12927 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) |
25 | 13, 15, 17, 18, 20, 21, 23, 24 | isgrpd 12904 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 ↾s cress 12465 +gcplusg 12538 0gc0g 12710 Grpcgrp 12882 invgcminusg 12883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-minusg 12886 |
This theorem is referenced by: subgid 13040 ringressid 13243 |
Copyright terms: Public domain | W3C validator |