| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpressid | GIF version | ||
| Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12749. (Contributed by Jim Kingdon, 28-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| grpressid.b | ⊢ 𝐵 = (Base‘𝐺) | 
| Ref | Expression | 
|---|---|
| grpressid | ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inidm 3372 | . . 3 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 2 | eqidd 2197 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
| 3 | grpressid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺)) | 
| 5 | id 19 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 6 | basfn 12736 | . . . . . 6 ⊢ Base Fn V | |
| 7 | elex 2774 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
| 8 | funfvex 5575 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 9 | 8 | funfni 5358 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) | 
| 10 | 6, 7, 9 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) | 
| 11 | 3, 10 | eqeltrid 2283 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) | 
| 12 | 2, 4, 5, 11 | ressbasd 12745 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐵 ∩ 𝐵) = (Base‘(𝐺 ↾s 𝐵))) | 
| 13 | 1, 12 | eqtr3id 2243 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) | 
| 14 | eqidd 2197 | . . 3 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘𝐺)) | |
| 15 | 2, 14, 11, 7 | ressplusgd 12806 | . 2 ⊢ (𝐺 ∈ Grp → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) | 
| 16 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 3, 16 | grpcl 13140 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) | 
| 18 | 3, 16 | grpass 13141 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) | 
| 19 | eqid 2196 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | 3, 19 | grpidcl 13161 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) | 
| 21 | 3, 16, 19 | grplid 13163 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) | 
| 22 | eqid 2196 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 23 | 3, 22 | grpinvcl 13180 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) | 
| 24 | 3, 16, 19, 22 | grplinv 13182 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑥) = (0g‘𝐺)) | 
| 25 | 13, 15, 17, 18, 20, 21, 23, 24 | isgrpd 13155 | 1 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 ↾s cress 12679 +gcplusg 12755 0gc0g 12927 Grpcgrp 13132 invgcminusg 13133 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 | 
| This theorem is referenced by: subgid 13305 ablressid 13465 ringressid 13619 | 
| Copyright terms: Public domain | W3C validator |