ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpressid GIF version

Theorem grpressid 13602
Description: A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 13112. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
grpressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
grpressid (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)

Proof of Theorem grpressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inidm 3413 . . 3 (𝐵𝐵) = 𝐵
2 eqidd 2230 . . . 4 (𝐺 ∈ Grp → (𝐺s 𝐵) = (𝐺s 𝐵))
3 grpressid.b . . . . 5 𝐵 = (Base‘𝐺)
43a1i 9 . . . 4 (𝐺 ∈ Grp → 𝐵 = (Base‘𝐺))
5 id 19 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
6 basfn 13099 . . . . . 6 Base Fn V
7 elex 2811 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
8 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
98funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
106, 7, 9sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
113, 10eqeltrid 2316 . . . 4 (𝐺 ∈ Grp → 𝐵 ∈ V)
122, 4, 5, 11ressbasd 13108 . . 3 (𝐺 ∈ Grp → (𝐵𝐵) = (Base‘(𝐺s 𝐵)))
131, 12eqtr3id 2276 . 2 (𝐺 ∈ Grp → 𝐵 = (Base‘(𝐺s 𝐵)))
14 eqidd 2230 . . 3 (𝐺 ∈ Grp → (+g𝐺) = (+g𝐺))
152, 14, 11, 7ressplusgd 13170 . 2 (𝐺 ∈ Grp → (+g𝐺) = (+g‘(𝐺s 𝐵)))
16 eqid 2229 . . 3 (+g𝐺) = (+g𝐺)
173, 16grpcl 13549 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
183, 16grpass 13550 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
19 eqid 2229 . . 3 (0g𝐺) = (0g𝐺)
203, 19grpidcl 13570 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
213, 16, 19grplid 13572 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
22 eqid 2229 . . 3 (invg𝐺) = (invg𝐺)
233, 22grpinvcl 13589 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
243, 16, 19, 22grplinv 13591 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
2513, 15, 17, 18, 20, 21, 23, 24isgrpd 13564 1 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196   Fn wfn 5313  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  +gcplusg 13118  0gc0g 13297  Grpcgrp 13541  invgcminusg 13542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545
This theorem is referenced by:  subgid  13720  ablressid  13880  ringressid  14034
  Copyright terms: Public domain W3C validator