ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrresf1 GIF version

Theorem inrresf1 7229
Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inrresf1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)

Proof of Theorem inrresf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djurf1or 7224 . 2 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
2 djurclr 7217 . 2 (𝑥𝐵 → ((inr ↾ 𝐵)‘𝑥) ∈ (𝐴𝐵))
31, 2inresflem 7227 1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cres 4721  1-1wf1 5315  1oc1o 6555  cdju 7204  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inr 7215
This theorem is referenced by:  updjudhcoinrg  7248  updjud  7249  caserel  7254  djudom  7260  djufun  7271  djuinj  7273  djudomr  7402  exmidsbthrlem  16390
  Copyright terms: Public domain W3C validator