ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inlresf1 GIF version

Theorem inlresf1 7026
Description: The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inlresf1 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)

Proof of Theorem inlresf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulf1or 7021 . 2 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 djulclr 7014 . 2 (𝑥𝐴 → ((inl ↾ 𝐴)‘𝑥) ∈ (𝐴𝐵))
31, 2inresflem 7025 1 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  c0 3409  cres 4606  1-1wf1 5185  cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-dju 7003  df-inl 7012
This theorem is referenced by:  updjudhcoinlf  7045  updjud  7047  caserel  7052  djudom  7058  difinfsn  7065  djufun  7069  djuinj  7071  djudoml  7175
  Copyright terms: Public domain W3C validator