ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inlresf1 GIF version

Theorem inlresf1 7136
Description: The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inlresf1 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)

Proof of Theorem inlresf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulf1or 7131 . 2 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 djulclr 7124 . 2 (𝑥𝐴 → ((inl ↾ 𝐴)‘𝑥) ∈ (𝐴𝐵))
31, 2inresflem 7135 1 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  c0 3451  cres 4666  1-1wf1 5256  cdju 7112  inlcinl 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-dju 7113  df-inl 7122
This theorem is referenced by:  updjudhcoinlf  7155  updjud  7157  caserel  7162  djudom  7168  difinfsn  7175  djufun  7179  djuinj  7181  djudoml  7302
  Copyright terms: Public domain W3C validator