ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptex GIF version

Theorem mptex 5612
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
mptex.1 𝐴 ∈ V
Assertion
Ref Expression
mptex (𝑥𝐴𝐵) ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptex
StepHypRef Expression
1 mptex.1 . 2 𝐴 ∈ V
2 mptexg 5611 . 2 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1463  Vcvv 2658  cmpt 3957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099
This theorem is referenced by:  eufnfv  5614  abrexex  5981  ofmres  6000  difinfsn  6951  ctmlemr  6959  ctssdclemn0  6961  ctssdc  6964  enumct  6966  frec2uzrand  10118  frec2uzf1od  10119  frecfzennn  10139  uzennn  10149  0tonninf  10152  1tonninf  10153  hashinfom  10464  absval  10713  climle  11043  climcvg1nlem  11058  iserabs  11184  isumshft  11199  divcnv  11206  trireciplem  11209  expcnvap0  11211  expcnvre  11212  expcnv  11213  explecnv  11214  geolim  11220  geo2lim  11225  mertenslem2  11245  eftlub  11295  ctiunct  11848  restfn  12019  peano4nninf  13011  peano3nninf  13012  nninfsellemeq  13021  nninfsellemeqinf  13023
  Copyright terms: Public domain W3C validator