![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptex | GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mptex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mptexg 5784 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 |
This theorem is referenced by: mptrabex 5787 eufnfv 5790 abrexex 6171 ofmres 6190 difinfsn 7161 ctmlemr 7169 ctssdclemn0 7171 ctssdc 7174 enumct 7176 frec2uzrand 10479 frec2uzf1od 10480 frecfzennn 10500 uzennn 10510 0tonninf 10514 1tonninf 10515 hashinfom 10852 absval 11148 climle 11480 climcvg1nlem 11495 iserabs 11621 isumshft 11636 divcnv 11643 trireciplem 11646 expcnvap0 11648 expcnvre 11649 expcnv 11650 explecnv 11651 geolim 11657 geo2lim 11662 mertenslem2 11682 eftlub 11836 nninfctlemfo 12180 nninfct 12181 1arithlem1 12504 1arith 12508 ctiunct 12600 restfn 12857 cndsex 14052 metuex 14054 zrhval2 14118 ivthreinc 14824 elply 14913 peano4nninf 15566 peano3nninf 15567 nninfsellemeq 15574 nninfsellemeqinf 15576 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |