ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptex GIF version

Theorem mptex 5743
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
mptex.1 𝐴 ∈ V
Assertion
Ref Expression
mptex (𝑥𝐴𝐵) ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptex
StepHypRef Expression
1 mptex.1 . 2 𝐴 ∈ V
2 mptexg 5742 . 2 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2738  cmpt 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225
This theorem is referenced by:  mptrabex  5745  eufnfv  5748  abrexex  6118  ofmres  6137  difinfsn  7099  ctmlemr  7107  ctssdclemn0  7109  ctssdc  7112  enumct  7114  frec2uzrand  10405  frec2uzf1od  10406  frecfzennn  10426  uzennn  10436  0tonninf  10439  1tonninf  10440  hashinfom  10758  absval  11010  climle  11342  climcvg1nlem  11357  iserabs  11483  isumshft  11498  divcnv  11505  trireciplem  11508  expcnvap0  11510  expcnvre  11511  expcnv  11512  explecnv  11513  geolim  11519  geo2lim  11524  mertenslem2  11544  eftlub  11698  1arithlem1  12361  1arith  12365  ctiunct  12441  restfn  12692  peano4nninf  14758  peano3nninf  14759  nninfsellemeq  14766  nninfsellemeqinf  14768  dceqnconst  14810  dcapnconst  14811
  Copyright terms: Public domain W3C validator