ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptex GIF version

Theorem mptex 5523
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
mptex.1 𝐴 ∈ V
Assertion
Ref Expression
mptex (𝑥𝐴𝐵) ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptex
StepHypRef Expression
1 mptex.1 . 2 𝐴 ∈ V
2 mptexg 5522 . 2 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
31, 2ax-mp 7 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1438  Vcvv 2619  cmpt 3899
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023
This theorem is referenced by:  eufnfv  5525  abrexex  5888  ofmres  5907  frec2uzrand  9812  frec2uzf1od  9813  frecfzennn  9833  0tonninf  9845  1tonninf  9846  hashinfom  10186  absval  10434  climle  10722  climcvg1nlem  10738  iserabs  10869  isumshft  10884  divcnv  10891  trireciplem  10894  expcnvap0  10896  expcnvre  10897  expcnv  10898  explecnv  10899  geolim  10905  geo2lim  10910  mertenslem2  10930  eftlub  10980  peano4nninf  11896  peano3nninf  11897  nninfsellemeq  11906  nninfsellemeqinf  11908
  Copyright terms: Public domain W3C validator