| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mptexg 5790 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: mptrabex 5793 eufnfv 5796 abrexex 6183 ofmres 6202 difinfsn 7175 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 enumct 7190 frec2uzrand 10514 frec2uzf1od 10515 frecfzennn 10535 uzennn 10545 0tonninf 10549 1tonninf 10550 hashinfom 10887 absval 11183 climle 11516 climcvg1nlem 11531 iserabs 11657 isumshft 11672 divcnv 11679 trireciplem 11682 expcnvap0 11684 expcnvre 11685 expcnv 11686 explecnv 11687 geolim 11693 geo2lim 11698 mertenslem2 11718 eftlub 11872 nninfctlemfo 12232 nninfct 12233 1arithlem1 12557 1arith 12561 ctiunct 12682 restfn 12945 cndsex 14185 metuex 14187 zrhval2 14251 ivthreinc 14965 elply 15054 peano4nninf 15737 peano3nninf 15738 nninfsellemeq 15745 nninfsellemeqinf 15747 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |