| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mptexg 5787 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 |
| This theorem is referenced by: mptrabex 5790 eufnfv 5793 abrexex 6174 ofmres 6193 difinfsn 7166 ctmlemr 7174 ctssdclemn0 7176 ctssdc 7179 enumct 7181 frec2uzrand 10497 frec2uzf1od 10498 frecfzennn 10518 uzennn 10528 0tonninf 10532 1tonninf 10533 hashinfom 10870 absval 11166 climle 11499 climcvg1nlem 11514 iserabs 11640 isumshft 11655 divcnv 11662 trireciplem 11665 expcnvap0 11667 expcnvre 11668 expcnv 11669 explecnv 11670 geolim 11676 geo2lim 11681 mertenslem2 11701 eftlub 11855 nninfctlemfo 12207 nninfct 12208 1arithlem1 12532 1arith 12536 ctiunct 12657 restfn 12914 cndsex 14109 metuex 14111 zrhval2 14175 ivthreinc 14881 elply 14970 peano4nninf 15650 peano3nninf 15651 nninfsellemeq 15658 nninfsellemeqinf 15660 dceqnconst 15704 dcapnconst 15705 |
| Copyright terms: Public domain | W3C validator |