| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mptexg 5790 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: mptrabex 5793 eufnfv 5796 abrexex 6183 ofmres 6202 difinfsn 7175 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 enumct 7190 frec2uzrand 10516 frec2uzf1od 10517 frecfzennn 10537 uzennn 10547 0tonninf 10551 1tonninf 10552 hashinfom 10889 absval 11185 climle 11518 climcvg1nlem 11533 iserabs 11659 isumshft 11674 divcnv 11681 trireciplem 11684 expcnvap0 11686 expcnvre 11687 expcnv 11688 explecnv 11689 geolim 11695 geo2lim 11700 mertenslem2 11720 eftlub 11874 nninfctlemfo 12234 nninfct 12235 1arithlem1 12559 1arith 12563 ctiunct 12684 restfn 12947 cndsex 14187 metuex 14189 zrhval2 14253 ivthreinc 14989 elply 15078 peano4nninf 15761 peano3nninf 15762 nninfsellemeq 15769 nninfsellemeqinf 15771 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |