| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mptexg 5868 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: mptrabex 5871 eufnfv 5874 abrexex 6268 ofmres 6287 difinfsn 7275 ctmlemr 7283 ctssdclemn0 7285 ctssdc 7288 enumct 7290 frec2uzrand 10635 frec2uzf1od 10636 frecfzennn 10656 uzennn 10666 0tonninf 10670 1tonninf 10671 hashinfom 11008 absval 11520 climle 11853 climcvg1nlem 11868 iserabs 11994 isumshft 12009 divcnv 12016 trireciplem 12019 expcnvap0 12021 expcnvre 12022 expcnv 12023 explecnv 12024 geolim 12030 geo2lim 12035 mertenslem2 12055 eftlub 12209 nninfctlemfo 12569 nninfct 12570 1arithlem1 12894 1arith 12898 ctiunct 13019 restfn 13284 cndsex 14525 metuex 14527 zrhval2 14591 ivthreinc 15327 elply 15416 peano4nninf 16402 peano3nninf 16403 nninfsellemeq 16410 nninfsellemeqinf 16412 dceqnconst 16458 dcapnconst 16459 |
| Copyright terms: Public domain | W3C validator |