| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptex | GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mptex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mptexg 5857 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 |
| This theorem is referenced by: mptrabex 5860 eufnfv 5863 abrexex 6252 ofmres 6271 difinfsn 7255 ctmlemr 7263 ctssdclemn0 7265 ctssdc 7268 enumct 7270 frec2uzrand 10614 frec2uzf1od 10615 frecfzennn 10635 uzennn 10645 0tonninf 10649 1tonninf 10650 hashinfom 10987 absval 11498 climle 11831 climcvg1nlem 11846 iserabs 11972 isumshft 11987 divcnv 11994 trireciplem 11997 expcnvap0 11999 expcnvre 12000 expcnv 12001 explecnv 12002 geolim 12008 geo2lim 12013 mertenslem2 12033 eftlub 12187 nninfctlemfo 12547 nninfct 12548 1arithlem1 12872 1arith 12876 ctiunct 12997 restfn 13262 cndsex 14502 metuex 14504 zrhval2 14568 ivthreinc 15304 elply 15393 peano4nninf 16303 peano3nninf 16304 nninfsellemeq 16311 nninfsellemeqinf 16313 dceqnconst 16359 dcapnconst 16360 |
| Copyright terms: Public domain | W3C validator |