Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptex | GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mptex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
mptex | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mptexg 5709 | . 2 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2725 ↦ cmpt 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 |
This theorem is referenced by: mptrabex 5712 eufnfv 5714 abrexex 6082 ofmres 6101 difinfsn 7061 ctmlemr 7069 ctssdclemn0 7071 ctssdc 7074 enumct 7076 frec2uzrand 10336 frec2uzf1od 10337 frecfzennn 10357 uzennn 10367 0tonninf 10370 1tonninf 10371 hashinfom 10687 absval 10939 climle 11271 climcvg1nlem 11286 iserabs 11412 isumshft 11427 divcnv 11434 trireciplem 11437 expcnvap0 11439 expcnvre 11440 expcnv 11441 explecnv 11442 geolim 11448 geo2lim 11453 mertenslem2 11473 eftlub 11627 1arithlem1 12289 1arith 12293 ctiunct 12369 restfn 12555 peano4nninf 13846 peano3nninf 13847 nninfsellemeq 13854 nninfsellemeqinf 13856 dceqnconst 13898 dcapnconst 13899 |
Copyright terms: Public domain | W3C validator |