ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptex GIF version

Theorem mptex 5710
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
mptex.1 𝐴 ∈ V
Assertion
Ref Expression
mptex (𝑥𝐴𝐵) ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptex
StepHypRef Expression
1 mptex.1 . 2 𝐴 ∈ V
2 mptexg 5709 . 2 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2725  cmpt 4042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195
This theorem is referenced by:  mptrabex  5712  eufnfv  5714  abrexex  6082  ofmres  6101  difinfsn  7061  ctmlemr  7069  ctssdclemn0  7071  ctssdc  7074  enumct  7076  frec2uzrand  10336  frec2uzf1od  10337  frecfzennn  10357  uzennn  10367  0tonninf  10370  1tonninf  10371  hashinfom  10687  absval  10939  climle  11271  climcvg1nlem  11286  iserabs  11412  isumshft  11427  divcnv  11434  trireciplem  11437  expcnvap0  11439  expcnvre  11440  expcnv  11441  explecnv  11442  geolim  11448  geo2lim  11453  mertenslem2  11473  eftlub  11627  1arithlem1  12289  1arith  12293  ctiunct  12369  restfn  12555  peano4nninf  13846  peano3nninf  13847  nninfsellemeq  13854  nninfsellemeqinf  13856  dceqnconst  13898  dcapnconst  13899
  Copyright terms: Public domain W3C validator