ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzled GIF version

Theorem frec2uzled 10574
Description: The mapping 𝐺 (see frec2uz0d 10544) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypotheses
Ref Expression
frec2uzled.1 (𝜑𝐶 ∈ ℤ)
frec2uzled.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzled.a (𝜑𝐴 ∈ ω)
frec2uzled.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzled (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzled
StepHypRef Expression
1 frec2uzled.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uzled.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frec2uzled.a . . . 4 (𝜑𝐴 ∈ ω)
4 frec2uzled.b . . . 4 (𝜑𝐵 ∈ ω)
51, 2, 3, 4frec2uzlt2d 10549 . . 3 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))
61, 2frec2uzf1od 10551 . . . . . 6 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
7 f1of1 5521 . . . . . 6 (𝐺:ω–1-1-onto→(ℤ𝐶) → 𝐺:ω–1-1→(ℤ𝐶))
86, 7syl 14 . . . . 5 (𝜑𝐺:ω–1-1→(ℤ𝐶))
9 f1fveq 5841 . . . . 5 ((𝐺:ω–1-1→(ℤ𝐶) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐺𝐴) = (𝐺𝐵) ↔ 𝐴 = 𝐵))
108, 3, 4, 9syl12anc 1248 . . . 4 (𝜑 → ((𝐺𝐴) = (𝐺𝐵) ↔ 𝐴 = 𝐵))
1110bicomd 141 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐺𝐴) = (𝐺𝐵)))
125, 11orbi12d 795 . 2 (𝜑 → ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
13 nnsseleq 6587 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
143, 4, 13syl2anc 411 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
151, 2, 3frec2uzzd 10545 . . 3 (𝜑 → (𝐺𝐴) ∈ ℤ)
161, 2, 4frec2uzzd 10545 . . 3 (𝜑 → (𝐺𝐵) ∈ ℤ)
17 zleloe 9419 . . 3 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝐵) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
1815, 16, 17syl2anc 411 . 2 (𝜑 → ((𝐺𝐴) ≤ (𝐺𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
1912, 14, 183bitr4d 220 1 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710   = wceq 1373  wcel 2176  wss 3166   class class class wbr 4044  cmpt 4105  ωcom 4638  1-1wf1 5268  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  freccfrec 6476  1c1 7926   + caddc 7928   < clt 8107  cle 8108  cz 9372  cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  fihashdom  10948  ennnfonelemkh  12783  ctinfomlemom  12798
  Copyright terms: Public domain W3C validator