ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzled GIF version

Theorem frec2uzled 10364
Description: The mapping 𝐺 (see frec2uz0d 10334) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypotheses
Ref Expression
frec2uzled.1 (𝜑𝐶 ∈ ℤ)
frec2uzled.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzled.a (𝜑𝐴 ∈ ω)
frec2uzled.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzled (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzled
StepHypRef Expression
1 frec2uzled.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uzled.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frec2uzled.a . . . 4 (𝜑𝐴 ∈ ω)
4 frec2uzled.b . . . 4 (𝜑𝐵 ∈ ω)
51, 2, 3, 4frec2uzlt2d 10339 . . 3 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))
61, 2frec2uzf1od 10341 . . . . . 6 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
7 f1of1 5431 . . . . . 6 (𝐺:ω–1-1-onto→(ℤ𝐶) → 𝐺:ω–1-1→(ℤ𝐶))
86, 7syl 14 . . . . 5 (𝜑𝐺:ω–1-1→(ℤ𝐶))
9 f1fveq 5740 . . . . 5 ((𝐺:ω–1-1→(ℤ𝐶) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐺𝐴) = (𝐺𝐵) ↔ 𝐴 = 𝐵))
108, 3, 4, 9syl12anc 1226 . . . 4 (𝜑 → ((𝐺𝐴) = (𝐺𝐵) ↔ 𝐴 = 𝐵))
1110bicomd 140 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐺𝐴) = (𝐺𝐵)))
125, 11orbi12d 783 . 2 (𝜑 → ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
13 nnsseleq 6469 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
143, 4, 13syl2anc 409 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
151, 2, 3frec2uzzd 10335 . . 3 (𝜑 → (𝐺𝐴) ∈ ℤ)
161, 2, 4frec2uzzd 10335 . . 3 (𝜑 → (𝐺𝐵) ∈ ℤ)
17 zleloe 9238 . . 3 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝐵) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
1815, 16, 17syl2anc 409 . 2 (𝜑 → ((𝐺𝐴) ≤ (𝐺𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
1912, 14, 183bitr4d 219 1 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698   = wceq 1343  wcel 2136  wss 3116   class class class wbr 3982  cmpt 4043  ωcom 4567  1-1wf1 5185  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  freccfrec 6358  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  fihashdom  10716  ennnfonelemkh  12345  ctinfomlemom  12360
  Copyright terms: Public domain W3C validator