Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uzled | GIF version |
Description: The mapping 𝐺 (see frec2uz0d 10334) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.) |
Ref | Expression |
---|---|
frec2uzled.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uzled.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzled.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
frec2uzled.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
Ref | Expression |
---|---|
frec2uzled | ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uzled.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | frec2uzled.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
3 | frec2uzled.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
4 | frec2uzled.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ω) | |
5 | 1, 2, 3, 4 | frec2uzlt2d 10339 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
6 | 1, 2 | frec2uzf1od 10341 | . . . . . 6 ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
7 | f1of1 5431 | . . . . . 6 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) → 𝐺:ω–1-1→(ℤ≥‘𝐶)) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1→(ℤ≥‘𝐶)) |
9 | f1fveq 5740 | . . . . 5 ⊢ ((𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐺‘𝐴) = (𝐺‘𝐵) ↔ 𝐴 = 𝐵)) | |
10 | 8, 3, 4, 9 | syl12anc 1226 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝐴) = (𝐺‘𝐵) ↔ 𝐴 = 𝐵)) |
11 | 10 | bicomd 140 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐺‘𝐴) = (𝐺‘𝐵))) |
12 | 5, 11 | orbi12d 783 | . 2 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) |
13 | nnsseleq 6469 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
14 | 3, 4, 13 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
15 | 1, 2, 3 | frec2uzzd 10335 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
16 | 1, 2, 4 | frec2uzzd 10335 | . . 3 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
17 | zleloe 9238 | . . 3 ⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝐵) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) | |
18 | 15, 16, 17 | syl2anc 409 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) ≤ (𝐺‘𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) |
19 | 12, 14, 18 | 3bitr4d 219 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 class class class wbr 3982 ↦ cmpt 4043 ωcom 4567 –1-1→wf1 5185 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 freccfrec 6358 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: fihashdom 10716 ennnfonelemkh 12345 ctinfomlemom 12360 |
Copyright terms: Public domain | W3C validator |