| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzled | GIF version | ||
| Description: The mapping 𝐺 (see frec2uz0d 10542) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.) |
| Ref | Expression |
|---|---|
| frec2uzled.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uzled.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| frec2uzled.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
| frec2uzled.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
| Ref | Expression |
|---|---|
| frec2uzled | ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uzled.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uzled.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | frec2uzled.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 4 | frec2uzled.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ω) | |
| 5 | 1, 2, 3, 4 | frec2uzlt2d 10547 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 6 | 1, 2 | frec2uzf1od 10549 | . . . . . 6 ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 7 | f1of1 5520 | . . . . . 6 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) → 𝐺:ω–1-1→(ℤ≥‘𝐶)) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1→(ℤ≥‘𝐶)) |
| 9 | f1fveq 5840 | . . . . 5 ⊢ ((𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐺‘𝐴) = (𝐺‘𝐵) ↔ 𝐴 = 𝐵)) | |
| 10 | 8, 3, 4, 9 | syl12anc 1247 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝐴) = (𝐺‘𝐵) ↔ 𝐴 = 𝐵)) |
| 11 | 10 | bicomd 141 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐺‘𝐴) = (𝐺‘𝐵))) |
| 12 | 5, 11 | orbi12d 794 | . 2 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) |
| 13 | nnsseleq 6586 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 14 | 3, 4, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 15 | 1, 2, 3 | frec2uzzd 10543 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
| 16 | 1, 2, 4 | frec2uzzd 10543 | . . 3 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
| 17 | zleloe 9418 | . . 3 ⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝐵) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) | |
| 18 | 15, 16, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) ≤ (𝐺‘𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) |
| 19 | 12, 14, 18 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 class class class wbr 4043 ↦ cmpt 4104 ωcom 4637 –1-1→wf1 5267 –1-1-onto→wf1o 5269 ‘cfv 5270 (class class class)co 5943 freccfrec 6475 1c1 7925 + caddc 7927 < clt 8106 ≤ cle 8107 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 |
| This theorem is referenced by: fihashdom 10946 ennnfonelemkh 12754 ctinfomlemom 12769 |
| Copyright terms: Public domain | W3C validator |