ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzled GIF version

Theorem frec2uzled 10429
Description: The mapping 𝐺 (see frec2uz0d 10399) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypotheses
Ref Expression
frec2uzled.1 (𝜑𝐶 ∈ ℤ)
frec2uzled.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzled.a (𝜑𝐴 ∈ ω)
frec2uzled.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzled (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzled
StepHypRef Expression
1 frec2uzled.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uzled.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frec2uzled.a . . . 4 (𝜑𝐴 ∈ ω)
4 frec2uzled.b . . . 4 (𝜑𝐵 ∈ ω)
51, 2, 3, 4frec2uzlt2d 10404 . . 3 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))
61, 2frec2uzf1od 10406 . . . . . 6 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
7 f1of1 5461 . . . . . 6 (𝐺:ω–1-1-onto→(ℤ𝐶) → 𝐺:ω–1-1→(ℤ𝐶))
86, 7syl 14 . . . . 5 (𝜑𝐺:ω–1-1→(ℤ𝐶))
9 f1fveq 5773 . . . . 5 ((𝐺:ω–1-1→(ℤ𝐶) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐺𝐴) = (𝐺𝐵) ↔ 𝐴 = 𝐵))
108, 3, 4, 9syl12anc 1236 . . . 4 (𝜑 → ((𝐺𝐴) = (𝐺𝐵) ↔ 𝐴 = 𝐵))
1110bicomd 141 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ (𝐺𝐴) = (𝐺𝐵)))
125, 11orbi12d 793 . 2 (𝜑 → ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
13 nnsseleq 6502 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
143, 4, 13syl2anc 411 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
151, 2, 3frec2uzzd 10400 . . 3 (𝜑 → (𝐺𝐴) ∈ ℤ)
161, 2, 4frec2uzzd 10400 . . 3 (𝜑 → (𝐺𝐵) ∈ ℤ)
17 zleloe 9300 . . 3 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝐵) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
1815, 16, 17syl2anc 411 . 2 (𝜑 → ((𝐺𝐴) ≤ (𝐺𝐵) ↔ ((𝐺𝐴) < (𝐺𝐵) ∨ (𝐺𝐴) = (𝐺𝐵))))
1912, 14, 183bitr4d 220 1 (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 708   = wceq 1353  wcel 2148  wss 3130   class class class wbr 4004  cmpt 4065  ωcom 4590  1-1wf1 5214  1-1-ontowf1o 5216  cfv 5217  (class class class)co 5875  freccfrec 6391  1c1 7812   + caddc 7814   < clt 7992  cle 7993  cz 9253  cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529
This theorem is referenced by:  fihashdom  10783  ennnfonelemkh  12413  ctinfomlemom  12428
  Copyright terms: Public domain W3C validator