| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzled | GIF version | ||
| Description: The mapping 𝐺 (see frec2uz0d 10544) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.) |
| Ref | Expression |
|---|---|
| frec2uzled.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uzled.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| frec2uzled.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
| frec2uzled.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
| Ref | Expression |
|---|---|
| frec2uzled | ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uzled.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uzled.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | frec2uzled.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 4 | frec2uzled.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ω) | |
| 5 | 1, 2, 3, 4 | frec2uzlt2d 10549 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 6 | 1, 2 | frec2uzf1od 10551 | . . . . . 6 ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 7 | f1of1 5521 | . . . . . 6 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) → 𝐺:ω–1-1→(ℤ≥‘𝐶)) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1→(ℤ≥‘𝐶)) |
| 9 | f1fveq 5841 | . . . . 5 ⊢ ((𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐺‘𝐴) = (𝐺‘𝐵) ↔ 𝐴 = 𝐵)) | |
| 10 | 8, 3, 4, 9 | syl12anc 1248 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝐴) = (𝐺‘𝐵) ↔ 𝐴 = 𝐵)) |
| 11 | 10 | bicomd 141 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐺‘𝐴) = (𝐺‘𝐵))) |
| 12 | 5, 11 | orbi12d 795 | . 2 ⊢ (𝜑 → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) |
| 13 | nnsseleq 6587 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 14 | 3, 4, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 15 | 1, 2, 3 | frec2uzzd 10545 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
| 16 | 1, 2, 4 | frec2uzzd 10545 | . . 3 ⊢ (𝜑 → (𝐺‘𝐵) ∈ ℤ) |
| 17 | zleloe 9419 | . . 3 ⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝐵) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) | |
| 18 | 15, 16, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝐺‘𝐴) ≤ (𝐺‘𝐵) ↔ ((𝐺‘𝐴) < (𝐺‘𝐵) ∨ (𝐺‘𝐴) = (𝐺‘𝐵)))) |
| 19 | 12, 14, 18 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐺‘𝐴) ≤ (𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 class class class wbr 4044 ↦ cmpt 4105 ωcom 4638 –1-1→wf1 5268 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 freccfrec 6476 1c1 7926 + caddc 7928 < clt 8107 ≤ cle 8108 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: fihashdom 10948 ennnfonelemkh 12783 ctinfomlemom 12798 |
| Copyright terms: Public domain | W3C validator |