| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-ltwlin | GIF version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 8009. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-ltwlin | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7912 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 7912 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | elreal 7912 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
| 4 | breq1 4037 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 5 | breq1 4037 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
| 6 | 5 | orbi1d 792 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉) ↔ (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉))) |
| 7 | 4, 6 | imbi12d 234 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉)) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉)))) |
| 8 | breq2 4038 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 9 | breq2 4038 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 〈𝑧, 0R〉 <ℝ 𝐵)) | |
| 10 | 9 | orbi2d 791 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉) ↔ (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵))) |
| 11 | 8, 10 | imbi12d 234 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉)) ↔ (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵)))) |
| 12 | breq2 4038 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
| 13 | breq1 4037 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (〈𝑧, 0R〉 <ℝ 𝐵 ↔ 𝐶 <ℝ 𝐵)) | |
| 14 | 12, 13 | orbi12d 794 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵) ↔ (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| 15 | 14 | imbi2d 230 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵)) ↔ (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵)))) |
| 16 | ltsosr 7848 | . . . 4 ⊢ <R Or R | |
| 17 | sowlin 4356 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R)) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦))) | |
| 18 | 16, 17 | mpan 424 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦))) |
| 19 | ltresr 7923 | . . 3 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 20 | ltresr 7923 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
| 21 | ltresr 7923 | . . . 4 ⊢ (〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑧 <R 𝑦) | |
| 22 | 20, 21 | orbi12i 765 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉) ↔ (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦)) |
| 23 | 18, 19, 22 | 3imtr4g 205 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉))) |
| 24 | 1, 2, 3, 7, 11, 15, 23 | 3gencl 2797 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 〈cop 3626 class class class wbr 4034 Or wor 4331 Rcnr 7381 0Rc0r 7382 <R cltr 7387 ℝcr 7895 <ℝ cltrr 7900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-iltp 7554 df-enr 7810 df-nr 7811 df-ltr 7814 df-0r 7815 df-r 7906 df-lt 7909 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |