ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-ltwlin GIF version

Theorem axpre-ltwlin 7321
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7361. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltwlin ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem axpre-ltwlin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7269 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7269 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7269 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 3814 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
5 breq1 3814 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝐴 <𝑧, 0R⟩))
65orbi1d 738 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)))
74, 6imbi12d 232 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩))))
8 breq2 3815 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 breq2 3815 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑧, 0R⟩ <𝑦, 0R⟩ ↔ ⟨𝑧, 0R⟩ < 𝐵))
109orbi2d 737 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵)))
118, 10imbi12d 232 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)) ↔ (𝐴 < 𝐵 → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵))))
12 breq2 3815 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <𝑧, 0R⟩ ↔ 𝐴 < 𝐶))
13 breq1 3814 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ < 𝐵𝐶 < 𝐵))
1412, 13orbi12d 740 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
1514imbi2d 228 . 2 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵 → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵)) ↔ (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵))))
16 ltsosr 7213 . . . 4 <R Or R
17 sowlin 4111 . . . 4 (( <R Or R ∧ (𝑥R𝑦R𝑧R)) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
1816, 17mpan 415 . . 3 ((𝑥R𝑦R𝑧R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
19 ltresr 7279 . . 3 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
20 ltresr 7279 . . . 4 (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝑥 <R 𝑧)
21 ltresr 7279 . . . 4 (⟨𝑧, 0R⟩ <𝑦, 0R⟩ ↔ 𝑧 <R 𝑦)
2220, 21orbi12i 714 . . 3 ((⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝑥 <R 𝑧𝑧 <R 𝑦))
2318, 19, 223imtr4g 203 . 2 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)))
241, 2, 3, 7, 11, 15, 233gencl 2644 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662  w3a 920   = wceq 1285  wcel 1434  cop 3425   class class class wbr 3811   Or wor 4086  Rcnr 6759  0Rc0r 6760   <R cltr 6765  cr 7252   < cltrr 7257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-2o 6114  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-enq0 6886  df-nq0 6887  df-0nq0 6888  df-plq0 6889  df-mq0 6890  df-inp 6928  df-i1p 6929  df-iplp 6930  df-iltp 6932  df-enr 7175  df-nr 7176  df-ltr 7179  df-0r 7180  df-r 7263  df-lt 7266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator