ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-ltwlin GIF version

Theorem axpre-ltwlin 8026
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 8068. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltwlin ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem axpre-ltwlin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7971 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7971 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7971 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 4057 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
5 breq1 4057 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝐴 <𝑧, 0R⟩))
65orbi1d 793 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)))
74, 6imbi12d 234 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩))))
8 breq2 4058 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 breq2 4058 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑧, 0R⟩ <𝑦, 0R⟩ ↔ ⟨𝑧, 0R⟩ < 𝐵))
109orbi2d 792 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵)))
118, 10imbi12d 234 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)) ↔ (𝐴 < 𝐵 → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵))))
12 breq2 4058 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <𝑧, 0R⟩ ↔ 𝐴 < 𝐶))
13 breq1 4057 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ < 𝐵𝐶 < 𝐵))
1412, 13orbi12d 795 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
1514imbi2d 230 . 2 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵 → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵)) ↔ (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵))))
16 ltsosr 7907 . . . 4 <R Or R
17 sowlin 4380 . . . 4 (( <R Or R ∧ (𝑥R𝑦R𝑧R)) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
1816, 17mpan 424 . . 3 ((𝑥R𝑦R𝑧R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
19 ltresr 7982 . . 3 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
20 ltresr 7982 . . . 4 (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝑥 <R 𝑧)
21 ltresr 7982 . . . 4 (⟨𝑧, 0R⟩ <𝑦, 0R⟩ ↔ 𝑧 <R 𝑦)
2220, 21orbi12i 766 . . 3 ((⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝑥 <R 𝑧𝑧 <R 𝑦))
2318, 19, 223imtr4g 205 . 2 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)))
241, 2, 3, 7, 11, 15, 233gencl 2808 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710  w3a 981   = wceq 1373  wcel 2177  cop 3641   class class class wbr 4054   Or wor 4355  Rcnr 7440  0Rc0r 7441   <R cltr 7446  cr 7954   < cltrr 7959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-eprel 4349  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-1o 6520  df-2o 6521  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-pli 7448  df-mi 7449  df-lti 7450  df-plpq 7487  df-mpq 7488  df-enq 7490  df-nqqs 7491  df-plqqs 7492  df-mqqs 7493  df-1nqqs 7494  df-rq 7495  df-ltnqqs 7496  df-enq0 7567  df-nq0 7568  df-0nq0 7569  df-plq0 7570  df-mq0 7571  df-inp 7609  df-i1p 7610  df-iplp 7611  df-iltp 7613  df-enr 7869  df-nr 7870  df-ltr 7873  df-0r 7874  df-r 7965  df-lt 7968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator