| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-ltwlin | GIF version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 8068. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-ltwlin | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7971 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 7971 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | elreal 7971 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
| 4 | breq1 4057 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 5 | breq1 4057 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
| 6 | 5 | orbi1d 793 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉) ↔ (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉))) |
| 7 | 4, 6 | imbi12d 234 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉)) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉)))) |
| 8 | breq2 4058 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 9 | breq2 4058 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 〈𝑧, 0R〉 <ℝ 𝐵)) | |
| 10 | 9 | orbi2d 792 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉) ↔ (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵))) |
| 11 | 8, 10 | imbi12d 234 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉)) ↔ (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵)))) |
| 12 | breq2 4058 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
| 13 | breq1 4057 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (〈𝑧, 0R〉 <ℝ 𝐵 ↔ 𝐶 <ℝ 𝐵)) | |
| 14 | 12, 13 | orbi12d 795 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵) ↔ (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| 15 | 14 | imbi2d 230 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 → (𝐴 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 𝐵)) ↔ (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵)))) |
| 16 | ltsosr 7907 | . . . 4 ⊢ <R Or R | |
| 17 | sowlin 4380 | . . . 4 ⊢ (( <R Or R ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R)) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦))) | |
| 18 | 16, 17 | mpan 424 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦))) |
| 19 | ltresr 7982 | . . 3 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 20 | ltresr 7982 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
| 21 | ltresr 7982 | . . . 4 ⊢ (〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑧 <R 𝑦) | |
| 22 | 20, 21 | orbi12i 766 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉) ↔ (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦)) |
| 23 | 18, 19, 22 | 3imtr4g 205 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ∨ 〈𝑧, 0R〉 <ℝ 〈𝑦, 0R〉))) |
| 24 | 1, 2, 3, 7, 11, 15, 23 | 3gencl 2808 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 〈cop 3641 class class class wbr 4054 Or wor 4355 Rcnr 7440 0Rc0r 7441 <R cltr 7446 ℝcr 7954 <ℝ cltrr 7959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-2o 6521 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 df-enq0 7567 df-nq0 7568 df-0nq0 7569 df-plq0 7570 df-mq0 7571 df-inp 7609 df-i1p 7610 df-iplp 7611 df-iltp 7613 df-enr 7869 df-nr 7870 df-ltr 7873 df-0r 7874 df-r 7965 df-lt 7968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |