ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-ltwlin GIF version

Theorem axpre-ltwlin 7950
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7992. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltwlin ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem axpre-ltwlin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7895 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7895 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7895 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 4036 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
5 breq1 4036 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝐴 <𝑧, 0R⟩))
65orbi1d 792 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)))
74, 6imbi12d 234 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩))))
8 breq2 4037 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 breq2 4037 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑧, 0R⟩ <𝑦, 0R⟩ ↔ ⟨𝑧, 0R⟩ < 𝐵))
109orbi2d 791 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵)))
118, 10imbi12d 234 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)) ↔ (𝐴 < 𝐵 → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵))))
12 breq2 4037 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <𝑧, 0R⟩ ↔ 𝐴 < 𝐶))
13 breq1 4036 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ < 𝐵𝐶 < 𝐵))
1412, 13orbi12d 794 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
1514imbi2d 230 . 2 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵 → (𝐴 <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ < 𝐵)) ↔ (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵))))
16 ltsosr 7831 . . . 4 <R Or R
17 sowlin 4355 . . . 4 (( <R Or R ∧ (𝑥R𝑦R𝑧R)) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
1816, 17mpan 424 . . 3 ((𝑥R𝑦R𝑧R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
19 ltresr 7906 . . 3 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
20 ltresr 7906 . . . 4 (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝑥 <R 𝑧)
21 ltresr 7906 . . . 4 (⟨𝑧, 0R⟩ <𝑦, 0R⟩ ↔ 𝑧 <R 𝑦)
2220, 21orbi12i 765 . . 3 ((⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩) ↔ (𝑥 <R 𝑧𝑧 <R 𝑦))
2318, 19, 223imtr4g 205 . 2 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ∨ ⟨𝑧, 0R⟩ <𝑦, 0R⟩)))
241, 2, 3, 7, 11, 15, 233gencl 2797 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709  w3a 980   = wceq 1364  wcel 2167  cop 3625   class class class wbr 4033   Or wor 4330  Rcnr 7364  0Rc0r 7365   <R cltr 7370  cr 7878   < cltrr 7883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-iltp 7537  df-enr 7793  df-nr 7794  df-ltr 7797  df-0r 7798  df-r 7889  df-lt 7892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator