ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitric GIF version

Theorem pitric 6781
Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
pitric ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <N 𝐴)))

Proof of Theorem pitric
StepHypRef Expression
1 pinn 6769 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 6769 . . 3 (𝐵N𝐵 ∈ ω)
3 nntri2 6185 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
41, 2, 3syl2an 283 . 2 ((𝐴N𝐵N) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
5 ltpiord 6779 . 2 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
6 ltpiord 6779 . . . . 5 ((𝐵N𝐴N) → (𝐵 <N 𝐴𝐵𝐴))
76ancoms 264 . . . 4 ((𝐴N𝐵N) → (𝐵 <N 𝐴𝐵𝐴))
87orbi2d 737 . . 3 ((𝐴N𝐵N) → ((𝐴 = 𝐵𝐵 <N 𝐴) ↔ (𝐴 = 𝐵𝐵𝐴)))
98notbid 625 . 2 ((𝐴N𝐵N) → (¬ (𝐴 = 𝐵𝐵 <N 𝐴) ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
104, 5, 93bitr4d 218 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <N 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434   class class class wbr 3811  ωcom 4367  Ncnpi 6732   <N clti 6735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-tr 3902  df-eprel 4079  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-ni 6764  df-lti 6767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator