| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitric | GIF version | ||
| Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
| Ref | Expression |
|---|---|
| pitric | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7376 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 7376 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nntri2 6552 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 5 | ltpiord 7386 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | ltpiord 7386 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 7 | 6 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 8 | 7 | orbi2d 791 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 = 𝐵 ∨ 𝐵 <N 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 9 | 8 | notbid 668 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 10 | 4, 5, 9 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ωcom 4626 Ncnpi 7339 <N clti 7342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-eprel 4324 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-ni 7371 df-lti 7374 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |