| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitric | GIF version | ||
| Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
| Ref | Expression |
|---|---|
| pitric | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7496 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 7496 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nntri2 6640 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 5 | ltpiord 7506 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | ltpiord 7506 | . . . . 5 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 7 | 6 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 8 | 7 | orbi2d 795 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 = 𝐵 ∨ 𝐵 <N 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 9 | 8 | notbid 671 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 10 | 4, 5, 9 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <N 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ωcom 4682 Ncnpi 7459 <N clti 7462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-eprel 4380 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-ni 7491 df-lti 7494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |