ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitric GIF version

Theorem pitric 7141
Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
pitric ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <N 𝐴)))

Proof of Theorem pitric
StepHypRef Expression
1 pinn 7129 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 7129 . . 3 (𝐵N𝐵 ∈ ω)
3 nntri2 6390 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
41, 2, 3syl2an 287 . 2 ((𝐴N𝐵N) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
5 ltpiord 7139 . 2 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
6 ltpiord 7139 . . . . 5 ((𝐵N𝐴N) → (𝐵 <N 𝐴𝐵𝐴))
76ancoms 266 . . . 4 ((𝐴N𝐵N) → (𝐵 <N 𝐴𝐵𝐴))
87orbi2d 779 . . 3 ((𝐴N𝐵N) → ((𝐴 = 𝐵𝐵 <N 𝐴) ↔ (𝐴 = 𝐵𝐵𝐴)))
98notbid 656 . 2 ((𝐴N𝐵N) → (¬ (𝐴 = 𝐵𝐵 <N 𝐴) ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
104, 5, 93bitr4d 219 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 <N 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3929  ωcom 4504  Ncnpi 7092   <N clti 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-tr 4027  df-eprel 4211  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-ni 7124  df-lti 7127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator