ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0 GIF version

Theorem prodgt0 8738
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)

Proof of Theorem prodgt0
StepHypRef Expression
1 simpllr 524 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 𝐵 ∈ ℝ)
21renegcld 8269 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → -𝐵 ∈ ℝ)
3 simplll 523 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 𝐴 ∈ ℝ)
43renegcld 8269 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → -𝐴 ∈ ℝ)
5 simplr 520 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐵 ∈ ℝ)
65lt0neg1d 8404 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (𝐵 < 0 ↔ 0 < -𝐵))
76biimpa 294 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 0 < -𝐵)
8 simprr 522 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < (𝐴 · 𝐵))
9 simpll 519 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐴 ∈ ℝ)
109recnd 7918 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐴 ∈ ℂ)
115recnd 7918 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐵 ∈ ℂ)
1210, 11mul2negd 8302 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
138, 12breqtrrd 4004 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < (-𝐴 · -𝐵))
1410negcld 8187 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → -𝐴 ∈ ℂ)
1511negcld 8187 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → -𝐵 ∈ ℂ)
1614, 15mulcomd 7911 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (-𝐴 · -𝐵) = (-𝐵 · -𝐴))
1713, 16breqtrd 4002 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < (-𝐵 · -𝐴))
1817adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 0 < (-𝐵 · -𝐴))
19 prodgt0gt0 8737 . . . . . 6 (((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) ∧ (0 < -𝐵 ∧ 0 < (-𝐵 · -𝐴))) → 0 < -𝐴)
202, 4, 7, 18, 19syl22anc 1228 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 0 < -𝐴)
213lt0neg1d 8404 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
2220, 21mpbird 166 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 𝐴 < 0)
23 simplrl 525 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 0 ≤ 𝐴)
24 0red 7891 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → 0 ∈ ℝ)
2524, 3lenltd 8007 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2623, 25mpbid 146 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) ∧ 𝐵 < 0) → ¬ 𝐴 < 0)
2722, 26pm2.65da 651 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → ¬ 𝐵 < 0)
28 0red 7891 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 ∈ ℝ)
2928, 5lenltd 8007 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3027, 29mpbird 166 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 ≤ 𝐵)
319, 5remulcld 7920 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (𝐴 · 𝐵) ∈ ℝ)
3231, 8gt0ap0d 8518 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (𝐴 · 𝐵) # 0)
3310, 11, 32mulap0bbd 8548 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 𝐵 # 0)
34 0cnd 7883 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 ∈ ℂ)
35 apsym 8495 . . . 4 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 # 0 ↔ 0 # 𝐵))
3611, 34, 35syl2anc 409 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (𝐵 # 0 ↔ 0 # 𝐵))
3733, 36mpbid 146 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 # 𝐵)
38 ltleap 8521 . . 3 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵 ∧ 0 # 𝐵)))
3928, 5, 38syl2anc 409 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → (0 < 𝐵 ↔ (0 ≤ 𝐵 ∧ 0 # 𝐵)))
4030, 37, 39mpbir2and 933 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2135   class class class wbr 3976  (class class class)co 5836  cc 7742  cr 7743  0cc0 7744   · cmul 7749   < clt 7924  cle 7925  -cneg 8061   # cap 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560
This theorem is referenced by:  prodgt02  8739  prodgt0i  8794  evennn2n  11805
  Copyright terms: Public domain W3C validator