ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0 GIF version

Theorem prodgt0 8811
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodgt0 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 < ๐ต)

Proof of Theorem prodgt0
StepHypRef Expression
1 simpllr 534 . . . . . . 7 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ ๐ต โˆˆ โ„)
21renegcld 8339 . . . . . 6 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ -๐ต โˆˆ โ„)
3 simplll 533 . . . . . . 7 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ ๐ด โˆˆ โ„)
43renegcld 8339 . . . . . 6 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ -๐ด โˆˆ โ„)
5 simplr 528 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ ๐ต โˆˆ โ„)
65lt0neg1d 8474 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (๐ต < 0 โ†” 0 < -๐ต))
76biimpa 296 . . . . . 6 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ 0 < -๐ต)
8 simprr 531 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 < (๐ด ยท ๐ต))
9 simpll 527 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ ๐ด โˆˆ โ„)
109recnd 7988 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ ๐ด โˆˆ โ„‚)
115recnd 7988 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ ๐ต โˆˆ โ„‚)
1210, 11mul2negd 8372 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (-๐ด ยท -๐ต) = (๐ด ยท ๐ต))
138, 12breqtrrd 4033 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 < (-๐ด ยท -๐ต))
1410negcld 8257 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ -๐ด โˆˆ โ„‚)
1511negcld 8257 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ -๐ต โˆˆ โ„‚)
1614, 15mulcomd 7981 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (-๐ด ยท -๐ต) = (-๐ต ยท -๐ด))
1713, 16breqtrd 4031 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 < (-๐ต ยท -๐ด))
1817adantr 276 . . . . . 6 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ 0 < (-๐ต ยท -๐ด))
19 prodgt0gt0 8810 . . . . . 6 (((-๐ต โˆˆ โ„ โˆง -๐ด โˆˆ โ„) โˆง (0 < -๐ต โˆง 0 < (-๐ต ยท -๐ด))) โ†’ 0 < -๐ด)
202, 4, 7, 18, 19syl22anc 1239 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ 0 < -๐ด)
213lt0neg1d 8474 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ (๐ด < 0 โ†” 0 < -๐ด))
2220, 21mpbird 167 . . . 4 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ ๐ด < 0)
23 simplrl 535 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ 0 โ‰ค ๐ด)
24 0red 7960 . . . . . 6 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ 0 โˆˆ โ„)
2524, 3lenltd 8077 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ (0 โ‰ค ๐ด โ†” ยฌ ๐ด < 0))
2623, 25mpbid 147 . . . 4 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โˆง ๐ต < 0) โ†’ ยฌ ๐ด < 0)
2722, 26pm2.65da 661 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ ยฌ ๐ต < 0)
28 0red 7960 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 โˆˆ โ„)
2928, 5lenltd 8077 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (0 โ‰ค ๐ต โ†” ยฌ ๐ต < 0))
3027, 29mpbird 167 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 โ‰ค ๐ต)
319, 5remulcld 7990 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (๐ด ยท ๐ต) โˆˆ โ„)
3231, 8gt0ap0d 8588 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (๐ด ยท ๐ต) # 0)
3310, 11, 32mulap0bbd 8619 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ ๐ต # 0)
34 0cnd 7952 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 โˆˆ โ„‚)
35 apsym 8565 . . . 4 ((๐ต โˆˆ โ„‚ โˆง 0 โˆˆ โ„‚) โ†’ (๐ต # 0 โ†” 0 # ๐ต))
3611, 34, 35syl2anc 411 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (๐ต # 0 โ†” 0 # ๐ต))
3733, 36mpbid 147 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 # ๐ต)
38 ltleap 8591 . . 3 ((0 โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (0 < ๐ต โ†” (0 โ‰ค ๐ต โˆง 0 # ๐ต)))
3928, 5, 38syl2anc 411 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ (0 < ๐ต โ†” (0 โ‰ค ๐ต โˆง 0 # ๐ต)))
4030, 37, 39mpbir2and 944 1 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 < (๐ด ยท ๐ต))) โ†’ 0 < ๐ต)
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆˆ wcel 2148   class class class wbr 4005  (class class class)co 5877  โ„‚cc 7811  โ„cr 7812  0cc0 7813   ยท cmul 7818   < clt 7994   โ‰ค cle 7995  -cneg 8131   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632
This theorem is referenced by:  prodgt02  8812  prodgt0i  8867  evennn2n  11890
  Copyright terms: Public domain W3C validator