| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1o.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 2 | | iseqf1o.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 3 | | iseqf1o.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 4 | | iseqf1o.4 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | | iseqf1o.6 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 6 | | iseqf1o.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 7 | | iseqf1olemstep.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 8 | | iseqf1olemstep.j |
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 9 | | iseqf1olemstep.const |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| 10 | | iseqf1olemnk |
. . . . . 6
⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) |
| 11 | | iseqf1olemqres.q |
. . . . . 6
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| 12 | | iseqf1olemqsumk.p |
. . . . . 6
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | seq3f1olemqsumkj 10620 |
. . . . 5
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) |
| 14 | 13 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) |
| 15 | | f1ocnv 5520 |
. . . . . . . . . . . 12
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 16 | 8, 15 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 17 | | f1of 5507 |
. . . . . . . . . . 11
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 18 | 16, 17 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 19 | 18, 7 | ffvelcdmd 5701 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 20 | | elfzelz 10117 |
. . . . . . . . 9
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
| 21 | 19, 20 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
| 22 | 21 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
| 23 | 22 | peano2zd 9468 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → ((◡𝐽‘𝐾) + 1) ∈ ℤ) |
| 24 | | elfzel2 10115 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| 25 | 7, 24 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | 25 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → 𝑁 ∈ ℤ) |
| 27 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (◡𝐽‘𝐾) < 𝑁) |
| 28 | | zltp1le 9397 |
. . . . . . . 8
⊢ (((◡𝐽‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((◡𝐽‘𝐾) < 𝑁 ↔ ((◡𝐽‘𝐾) + 1) ≤ 𝑁)) |
| 29 | 22, 26, 28 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → ((◡𝐽‘𝐾) < 𝑁 ↔ ((◡𝐽‘𝐾) + 1) ≤ 𝑁)) |
| 30 | 27, 29 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → ((◡𝐽‘𝐾) + 1) ≤ 𝑁) |
| 31 | | eluz2 9624 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘((◡𝐽‘𝐾) + 1)) ↔ (((◡𝐽‘𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((◡𝐽‘𝐾) + 1) ≤ 𝑁)) |
| 32 | 23, 26, 30, 31 | syl3anbrc 1183 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → 𝑁 ∈
(ℤ≥‘((◡𝐽‘𝐾) + 1))) |
| 33 | 7 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) |
| 34 | 8 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 35 | | elfzel1 10116 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| 36 | 7, 35 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 37 | 36 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑀 ∈ ℤ) |
| 38 | 33, 24 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑁 ∈ ℤ) |
| 39 | | elfzelz 10117 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁) → 𝑣 ∈ ℤ) |
| 40 | 39 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑣 ∈ ℤ) |
| 41 | 37, 38, 40 | 3jca 1179 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ)) |
| 42 | 36 | zred 9465 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 43 | 42 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑀 ∈ ℝ) |
| 44 | 21 | zred 9465 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℝ) |
| 45 | | peano2re 8179 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐽‘𝐾) ∈ ℝ → ((◡𝐽‘𝐾) + 1) ∈ ℝ) |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((◡𝐽‘𝐾) + 1) ∈ ℝ) |
| 47 | 46 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → ((◡𝐽‘𝐾) + 1) ∈ ℝ) |
| 48 | 40 | zred 9465 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑣 ∈ ℝ) |
| 49 | | elfzelz 10117 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
| 50 | 7, 49 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 51 | 50 | zred 9465 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 52 | | elfzle1 10119 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| 53 | 7, 52 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ≤ 𝐾) |
| 54 | 4, 7, 8, 9 | iseqf1olemkle 10606 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ≤ (◡𝐽‘𝐾)) |
| 55 | 42, 51, 44, 53, 54 | letrd 8167 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ≤ (◡𝐽‘𝐾)) |
| 56 | 44 | lep1d 8975 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐽‘𝐾) ≤ ((◡𝐽‘𝐾) + 1)) |
| 57 | 42, 44, 46, 55, 56 | letrd 8167 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ≤ ((◡𝐽‘𝐾) + 1)) |
| 58 | 57 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑀 ≤ ((◡𝐽‘𝐾) + 1)) |
| 59 | | elfzle1 10119 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁) → ((◡𝐽‘𝐾) + 1) ≤ 𝑣) |
| 60 | 59 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → ((◡𝐽‘𝐾) + 1) ≤ 𝑣) |
| 61 | 43, 47, 48, 58, 60 | letrd 8167 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑀 ≤ 𝑣) |
| 62 | | elfzle2 10120 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁) → 𝑣 ≤ 𝑁) |
| 63 | 62 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑣 ≤ 𝑁) |
| 64 | 61, 63 | jca 306 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁)) |
| 65 | | elfz2 10107 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑀 ≤ 𝑣 ∧ 𝑣 ≤ 𝑁))) |
| 66 | 41, 64, 65 | sylanbrc 417 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑣 ∈ (𝑀...𝑁)) |
| 67 | 33, 34, 66, 11 | iseqf1olemqval 10609 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (𝑄‘𝑣) = if(𝑣 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑣 = 𝐾, 𝐾, (𝐽‘(𝑣 − 1))), (𝐽‘𝑣))) |
| 68 | 44 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → (◡𝐽‘𝐾) ∈ ℝ) |
| 69 | 68, 45 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → ((◡𝐽‘𝐾) + 1) ∈ ℝ) |
| 70 | 48 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝑣 ∈ ℝ) |
| 71 | 68 | ltp1d 8974 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → (◡𝐽‘𝐾) < ((◡𝐽‘𝐾) + 1)) |
| 72 | 60 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → ((◡𝐽‘𝐾) + 1) ≤ 𝑣) |
| 73 | 68, 69, 70, 71, 72 | ltletrd 8467 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → (◡𝐽‘𝐾) < 𝑣) |
| 74 | | elfzle2 10120 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝐾...(◡𝐽‘𝐾)) → 𝑣 ≤ (◡𝐽‘𝐾)) |
| 75 | 74 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝑣 ≤ (◡𝐽‘𝐾)) |
| 76 | 70, 68, 75 | lensymd 8165 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (◡𝐽‘𝐾) < 𝑣) |
| 77 | 73, 76 | pm2.65da 662 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → ¬ 𝑣 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 78 | 77 | iffalsed 3572 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → if(𝑣 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑣 = 𝐾, 𝐾, (𝐽‘(𝑣 − 1))), (𝐽‘𝑣)) = (𝐽‘𝑣)) |
| 79 | 67, 78 | eqtrd 2229 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (𝑄‘𝑣) = (𝐽‘𝑣)) |
| 80 | 79 | fveq2d 5565 |
. . . . . 6
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (𝐺‘(𝑄‘𝑣)) = (𝐺‘(𝐽‘𝑣))) |
| 81 | 33, 34, 11 | iseqf1olemqf1o 10615 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 82 | 6 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
| 83 | 82 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
| 84 | 83 | r19.21bi 2585 |
. . . . . . 7
⊢ ((((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 85 | 33, 81, 66, 84, 12 | iseqf1olemfvp 10619 |
. . . . . 6
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑣) = (𝐺‘(𝑄‘𝑣))) |
| 86 | 33, 34, 66, 84, 12 | iseqf1olemfvp 10619 |
. . . . . 6
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑣) = (𝐺‘(𝐽‘𝑣))) |
| 87 | 80, 85, 86 | 3eqtr4rd 2240 |
. . . . 5
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑣 ∈ (((◡𝐽‘𝐾) + 1)...𝑁)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑣) = (⦋𝑄 / 𝑓⦌𝑃‘𝑣)) |
| 88 | 36 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑀 ∈ ℤ) |
| 89 | | eluzelz 9627 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘((◡𝐽‘𝐾) + 1)) → 𝑥 ∈ ℤ) |
| 90 | 89 | adantl 277 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑥 ∈ ℤ) |
| 91 | 42 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑀 ∈ ℝ) |
| 92 | 46 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → ((◡𝐽‘𝐾) + 1) ∈ ℝ) |
| 93 | 90 | zred 9465 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑥 ∈ ℝ) |
| 94 | 57 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑀 ≤ ((◡𝐽‘𝐾) + 1)) |
| 95 | | eluzle 9630 |
. . . . . . . . 9
⊢ (𝑥 ∈
(ℤ≥‘((◡𝐽‘𝐾) + 1)) → ((◡𝐽‘𝐾) + 1) ≤ 𝑥) |
| 96 | 95 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → ((◡𝐽‘𝐾) + 1) ≤ 𝑥) |
| 97 | 91, 92, 93, 94, 96 | letrd 8167 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑀 ≤ 𝑥) |
| 98 | | eluz2 9624 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥)) |
| 99 | 88, 90, 97, 98 | syl3anbrc 1183 |
. . . . . 6
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 100 | 7 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → 𝐾 ∈ (𝑀...𝑁)) |
| 101 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 102 | 6 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 103 | 100, 101,
11, 102, 12 | iseqf1olemjpcl 10617 |
. . . . . 6
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 104 | 99, 103 | syldan 282 |
. . . . 5
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 105 | 7, 8, 11, 6, 12 | iseqf1olemqpcl 10618 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 106 | 105 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 107 | 99, 106 | syldan 282 |
. . . . 5
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘((◡𝐽‘𝐾) + 1))) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 108 | 1 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 109 | 32, 87, 104, 107, 108 | seq3fveq 10588 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (seq((◡𝐽‘𝐾) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq((◡𝐽‘𝐾) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
| 110 | 14, 109 | oveq12d 5943 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → ((seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (seq((◡𝐽‘𝐾) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) = ((seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (seq((◡𝐽‘𝐾) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) |
| 111 | 3 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 112 | | eluz2 9624 |
. . . . . 6
⊢ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ 𝐾 ≤ (◡𝐽‘𝐾))) |
| 113 | 50, 21, 54, 112 | syl3anbrc 1183 |
. . . . 5
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾)) |
| 114 | 113 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾)) |
| 115 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) |
| 116 | 7 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (𝑀...𝑁)) |
| 117 | | elfzuz 10113 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 118 | 116, 117 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 119 | | uztrn 9635 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 120 | 115, 118,
119 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 121 | 7, 8, 11, 6, 12 | iseqf1olemjpcl 10617 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 122 | 120, 121 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 123 | 122 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 124 | 108, 111,
32, 114, 123 | seq3split 10597 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = ((seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (seq((◡𝐽‘𝐾) + 1)( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁))) |
| 125 | 120, 105 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 126 | 125 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |
| 127 | 108, 111,
32, 114, 126 | seq3split 10597 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁) = ((seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) + (seq((◡𝐽‘𝐾) + 1)( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁))) |
| 128 | 110, 124,
127 | 3eqtr4d 2239 |
. 2
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝑁) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
| 129 | 13 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) = 𝑁) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾))) |
| 130 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) = 𝑁) → (◡𝐽‘𝐾) = 𝑁) |
| 131 | 130 | fveq2d 5565 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) = 𝑁) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) |
| 132 | 130 | fveq2d 5565 |
. . 3
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) = 𝑁) → (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘(◡𝐽‘𝐾)) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
| 133 | 129, 131,
132 | 3eqtr3d 2237 |
. 2
⊢ ((𝜑 ∧ (◡𝐽‘𝐾) = 𝑁) → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |
| 134 | | elfzle2 10120 |
. . . 4
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ≤ 𝑁) |
| 135 | 19, 134 | syl 14 |
. . 3
⊢ (𝜑 → (◡𝐽‘𝐾) ≤ 𝑁) |
| 136 | | zleloe 9390 |
. . . 4
⊢ (((◡𝐽‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((◡𝐽‘𝐾) ≤ 𝑁 ↔ ((◡𝐽‘𝐾) < 𝑁 ∨ (◡𝐽‘𝐾) = 𝑁))) |
| 137 | 21, 25, 136 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((◡𝐽‘𝐾) ≤ 𝑁 ↔ ((◡𝐽‘𝐾) < 𝑁 ∨ (◡𝐽‘𝐾) = 𝑁))) |
| 138 | 135, 137 | mpbid 147 |
. 2
⊢ (𝜑 → ((◡𝐽‘𝐾) < 𝑁 ∨ (◡𝐽‘𝐾) = 𝑁)) |
| 139 | 128, 133,
138 | mpjaodan 799 |
1
⊢ (𝜑 → (seq𝐾( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝐾( + , ⦋𝑄 / 𝑓⦌𝑃)‘𝑁)) |