ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsumk GIF version

Theorem seq3f1olemqsumk 9928
Description: Lemma for seq3f1o 9933. 𝑄 gives the same sum as 𝐽 in the range (𝐾...𝑁). (Contributed by Jim Kingdon, 22-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqf1o.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
iseqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1o.7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemstep.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemstep.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemstep.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
iseqf1olemnk (𝜑𝐾 ≠ (𝐽𝐾))
iseqf1olemqres.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqsumk.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
seq3f1olemqsumk (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝐽   𝑥,𝑄   𝜑,𝑥   𝑥, + ,𝑦,𝑧   𝑓,𝐺,𝑥   𝑓,𝐽,𝑦,𝑧   𝑦,𝐾,𝑧   𝑓,𝑀   𝑓,𝑁,𝑥,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑄,𝑓,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑢   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑢,𝑓)   + (𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑢,𝑓)   𝐺(𝑦,𝑧,𝑢)   𝐾(𝑓)   𝑀(𝑦,𝑧)

Proof of Theorem seq3f1olemqsumk
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iseqf1o.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 iseqf1o.2 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3 iseqf1o.3 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 iseqf1o.4 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 iseqf1o.6 . . . . . 6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
6 iseqf1o.7 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
7 iseqf1olemstep.k . . . . . 6 (𝜑𝐾 ∈ (𝑀...𝑁))
8 iseqf1olemstep.j . . . . . 6 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
9 iseqf1olemstep.const . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
10 iseqf1olemnk . . . . . 6 (𝜑𝐾 ≠ (𝐽𝐾))
11 iseqf1olemqres.q . . . . . 6 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
12 iseqf1olemqsumk.p . . . . . 6 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12seq3f1olemqsumkj 9927 . . . . 5 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
1413adantr 270 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
15 f1ocnv 5266 . . . . . . . . . . . 12 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
168, 15syl 14 . . . . . . . . . . 11 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
17 f1of 5253 . . . . . . . . . . 11 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1816, 17syl 14 . . . . . . . . . 10 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1918, 7ffvelrnd 5435 . . . . . . . . 9 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
20 elfzelz 9440 . . . . . . . . 9 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
2119, 20syl 14 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ ℤ)
2221adantr 270 . . . . . . 7 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (𝐽𝐾) ∈ ℤ)
2322peano2zd 8871 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → ((𝐽𝐾) + 1) ∈ ℤ)
24 elfzel2 9438 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
257, 24syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 270 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → 𝑁 ∈ ℤ)
27 simpr 108 . . . . . . 7 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (𝐽𝐾) < 𝑁)
28 zltp1le 8804 . . . . . . . 8 (((𝐽𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) < 𝑁 ↔ ((𝐽𝐾) + 1) ≤ 𝑁))
2922, 26, 28syl2anc 403 . . . . . . 7 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → ((𝐽𝐾) < 𝑁 ↔ ((𝐽𝐾) + 1) ≤ 𝑁))
3027, 29mpbid 145 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → ((𝐽𝐾) + 1) ≤ 𝑁)
31 eluz2 9025 . . . . . 6 (𝑁 ∈ (ℤ‘((𝐽𝐾) + 1)) ↔ (((𝐽𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐽𝐾) + 1) ≤ 𝑁))
3223, 26, 30, 31syl3anbrc 1127 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → 𝑁 ∈ (ℤ‘((𝐽𝐾) + 1)))
337ad2antrr 472 . . . . . . . . 9 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
348ad2antrr 472 . . . . . . . . 9 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
35 elfzel1 9439 . . . . . . . . . . . . 13 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
367, 35syl 14 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
3736ad2antrr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑀 ∈ ℤ)
3833, 24syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑁 ∈ ℤ)
39 elfzelz 9440 . . . . . . . . . . . 12 (𝑣 ∈ (((𝐽𝐾) + 1)...𝑁) → 𝑣 ∈ ℤ)
4039adantl 271 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑣 ∈ ℤ)
4137, 38, 403jca 1123 . . . . . . . . . 10 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ))
4236zred 8868 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
4342ad2antrr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑀 ∈ ℝ)
4421zred 8868 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ∈ ℝ)
45 peano2re 7618 . . . . . . . . . . . . . 14 ((𝐽𝐾) ∈ ℝ → ((𝐽𝐾) + 1) ∈ ℝ)
4644, 45syl 14 . . . . . . . . . . . . 13 (𝜑 → ((𝐽𝐾) + 1) ∈ ℝ)
4746ad2antrr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → ((𝐽𝐾) + 1) ∈ ℝ)
4840zred 8868 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑣 ∈ ℝ)
49 elfzelz 9440 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
507, 49syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ ℤ)
5150zred 8868 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ ℝ)
52 elfzle1 9441 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
537, 52syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑀𝐾)
544, 7, 8, 9iseqf1olemkle 9913 . . . . . . . . . . . . . . 15 (𝜑𝐾 ≤ (𝐽𝐾))
5542, 51, 44, 53, 54letrd 7607 . . . . . . . . . . . . . 14 (𝜑𝑀 ≤ (𝐽𝐾))
5644lep1d 8392 . . . . . . . . . . . . . 14 (𝜑 → (𝐽𝐾) ≤ ((𝐽𝐾) + 1))
5742, 44, 46, 55, 56letrd 7607 . . . . . . . . . . . . 13 (𝜑𝑀 ≤ ((𝐽𝐾) + 1))
5857ad2antrr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑀 ≤ ((𝐽𝐾) + 1))
59 elfzle1 9441 . . . . . . . . . . . . 13 (𝑣 ∈ (((𝐽𝐾) + 1)...𝑁) → ((𝐽𝐾) + 1) ≤ 𝑣)
6059adantl 271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → ((𝐽𝐾) + 1) ≤ 𝑣)
6143, 47, 48, 58, 60letrd 7607 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑀𝑣)
62 elfzle2 9442 . . . . . . . . . . . 12 (𝑣 ∈ (((𝐽𝐾) + 1)...𝑁) → 𝑣𝑁)
6362adantl 271 . . . . . . . . . . 11 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑣𝑁)
6461, 63jca 300 . . . . . . . . . 10 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝑀𝑣𝑣𝑁))
65 elfz2 9431 . . . . . . . . . 10 (𝑣 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑀𝑣𝑣𝑁)))
6641, 64, 65sylanbrc 408 . . . . . . . . 9 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑣 ∈ (𝑀...𝑁))
6733, 34, 66, 11iseqf1olemqval 9916 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝑄𝑣) = if(𝑣 ∈ (𝐾...(𝐽𝐾)), if(𝑣 = 𝐾, 𝐾, (𝐽‘(𝑣 − 1))), (𝐽𝑣)))
6844ad3antrrr 476 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐾) ∈ ℝ)
6968, 45syl 14 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → ((𝐽𝐾) + 1) ∈ ℝ)
7048adantr 270 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → 𝑣 ∈ ℝ)
7168ltp1d 8391 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐾) < ((𝐽𝐾) + 1))
7260adantr 270 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → ((𝐽𝐾) + 1) ≤ 𝑣)
7368, 69, 70, 71, 72ltletrd 7901 . . . . . . . . . 10 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → (𝐽𝐾) < 𝑣)
74 elfzle2 9442 . . . . . . . . . . . 12 (𝑣 ∈ (𝐾...(𝐽𝐾)) → 𝑣 ≤ (𝐽𝐾))
7574adantl 271 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → 𝑣 ≤ (𝐽𝐾))
7670, 68, 75lensymd 7605 . . . . . . . . . 10 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑣 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐽𝐾) < 𝑣)
7773, 76pm2.65da 622 . . . . . . . . 9 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → ¬ 𝑣 ∈ (𝐾...(𝐽𝐾)))
7877iffalsed 3403 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → if(𝑣 ∈ (𝐾...(𝐽𝐾)), if(𝑣 = 𝐾, 𝐾, (𝐽‘(𝑣 − 1))), (𝐽𝑣)) = (𝐽𝑣))
7967, 78eqtrd 2120 . . . . . . 7 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝑄𝑣) = (𝐽𝑣))
8079fveq2d 5309 . . . . . 6 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝐺‘(𝑄𝑣)) = (𝐺‘(𝐽𝑣)))
8133, 34, 11iseqf1olemqf1o 9922 . . . . . . 7 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
826ralrimiva 2446 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
8382ad2antrr 472 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
8483r19.21bi 2461 . . . . . . 7 ((((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
8533, 81, 66, 84, 12iseqf1olemfvp 9926 . . . . . 6 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝑄 / 𝑓𝑃𝑣) = (𝐺‘(𝑄𝑣)))
8633, 34, 66, 84, 12iseqf1olemfvp 9926 . . . . . 6 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝐽 / 𝑓𝑃𝑣) = (𝐺‘(𝐽𝑣)))
8780, 85, 863eqtr4rd 2131 . . . . 5 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑣 ∈ (((𝐽𝐾) + 1)...𝑁)) → (𝐽 / 𝑓𝑃𝑣) = (𝑄 / 𝑓𝑃𝑣))
8836ad2antrr 472 . . . . . . 7 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑀 ∈ ℤ)
89 eluzelz 9028 . . . . . . . 8 (𝑥 ∈ (ℤ‘((𝐽𝐾) + 1)) → 𝑥 ∈ ℤ)
9089adantl 271 . . . . . . 7 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑥 ∈ ℤ)
9142ad2antrr 472 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑀 ∈ ℝ)
9246ad2antrr 472 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → ((𝐽𝐾) + 1) ∈ ℝ)
9390zred 8868 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑥 ∈ ℝ)
9457ad2antrr 472 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑀 ≤ ((𝐽𝐾) + 1))
95 eluzle 9031 . . . . . . . . 9 (𝑥 ∈ (ℤ‘((𝐽𝐾) + 1)) → ((𝐽𝐾) + 1) ≤ 𝑥)
9695adantl 271 . . . . . . . 8 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → ((𝐽𝐾) + 1) ≤ 𝑥)
9791, 92, 93, 94, 96letrd 7607 . . . . . . 7 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑀𝑥)
98 eluz2 9025 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
9988, 90, 97, 98syl3anbrc 1127 . . . . . 6 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → 𝑥 ∈ (ℤ𝑀))
1007adantr 270 . . . . . . 7 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → 𝐾 ∈ (𝑀...𝑁))
1018adantr 270 . . . . . . 7 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
1026adantlr 461 . . . . . . 7 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
103100, 101, 11, 102, 12iseqf1olemjpcl 9924 . . . . . 6 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
10499, 103syldan 276 . . . . 5 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
1057, 8, 11, 6, 12iseqf1olemqpcl 9925 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
106105adantlr 461 . . . . . 6 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
10799, 106syldan 276 . . . . 5 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ‘((𝐽𝐾) + 1))) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
1081adantlr 461 . . . . 5 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
10932, 87, 104, 107, 108seq3fveq 9895 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (seq((𝐽𝐾) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq((𝐽𝐾) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁))
11014, 109oveq12d 5670 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) + (seq((𝐽𝐾) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁)) = ((seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (seq((𝐽𝐾) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁)))
1113adantlr 461 . . . 4 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
112 eluz2 9025 . . . . . 6 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
11350, 21, 54, 112syl3anbrc 1127 . . . . 5 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
114113adantr 270 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (𝐽𝐾) ∈ (ℤ𝐾))
115 simpr 108 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
1167adantr 270 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (𝑀...𝑁))
117 elfzuz 9436 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
118116, 117syl 14 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
119 uztrn 9035 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
120115, 118, 119syl2anc 403 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝑀))
1217, 8, 11, 6, 12iseqf1olemjpcl 9924 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
122120, 121syldan 276 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
123122adantlr 461 . . . 4 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
124108, 111, 32, 114, 123seq3split 9907 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = ((seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) + (seq((𝐽𝐾) + 1)( + , 𝐽 / 𝑓𝑃)‘𝑁)))
125120, 105syldan 276 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
126125adantlr 461 . . . 4 (((𝜑 ∧ (𝐽𝐾) < 𝑁) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
127108, 111, 32, 114, 126seq3split 9907 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁) = ((seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) + (seq((𝐽𝐾) + 1)( + , 𝑄 / 𝑓𝑃)‘𝑁)))
128110, 124, 1273eqtr4d 2130 . 2 ((𝜑 ∧ (𝐽𝐾) < 𝑁) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
12913adantr 270 . . 3 ((𝜑 ∧ (𝐽𝐾) = 𝑁) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
130 simpr 108 . . . 4 ((𝜑 ∧ (𝐽𝐾) = 𝑁) → (𝐽𝐾) = 𝑁)
131130fveq2d 5309 . . 3 ((𝜑 ∧ (𝐽𝐾) = 𝑁) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁))
132130fveq2d 5309 . . 3 ((𝜑 ∧ (𝐽𝐾) = 𝑁) → (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
133129, 131, 1323eqtr3d 2128 . 2 ((𝜑 ∧ (𝐽𝐾) = 𝑁) → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
134 elfzle2 9442 . . . 4 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ≤ 𝑁)
13519, 134syl 14 . . 3 (𝜑 → (𝐽𝐾) ≤ 𝑁)
136 zleloe 8797 . . . 4 (((𝐽𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐽𝐾) ≤ 𝑁 ↔ ((𝐽𝐾) < 𝑁 ∨ (𝐽𝐾) = 𝑁)))
13721, 25, 136syl2anc 403 . . 3 (𝜑 → ((𝐽𝐾) ≤ 𝑁 ↔ ((𝐽𝐾) < 𝑁 ∨ (𝐽𝐾) = 𝑁)))
138135, 137mpbid 145 . 2 (𝜑 → ((𝐽𝐾) < 𝑁 ∨ (𝐽𝐾) = 𝑁))
139128, 133, 138mpjaodan 747 1 (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664  w3a 924   = wceq 1289  wcel 1438  wne 2255  wral 2359  csb 2933  ifcif 3393   class class class wbr 3845  cmpt 3899  ccnv 4437  wf 5011  1-1-ontowf1o 5014  cfv 5015  (class class class)co 5652  cr 7349  1c1 7351   + caddc 7353   < clt 7522  cle 7523  cmin 7653  cz 8750  cuz 9019  ...cfz 9424  ..^cfzo 9553  seqcseq 9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-1o 6181  df-er 6292  df-en 6458  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854
This theorem is referenced by:  seq3f1olemqsum  9929
  Copyright terms: Public domain W3C validator