| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltabs | GIF version | ||
| Description: A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| ltabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 𝐴 < 0) → 𝐴 < 0) | |
| 2 | simpllr 534 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < (abs‘𝐴)) | |
| 3 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 ∈ ℝ) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 5 | 0red 8115 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
| 6 | simpr 110 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 7 | 5, 4, 6 | ltled 8233 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
| 8 | absid 11548 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
| 9 | 4, 7, 8 | syl2anc 411 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
| 10 | 2, 9 | breqtrd 4088 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < 𝐴) |
| 11 | 4 | ltnrd 8226 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴) |
| 12 | 10, 11 | pm2.65da 665 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ¬ 0 < 𝐴) |
| 13 | recn 8100 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 14 | abscl 11528 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
| 16 | 15 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) ∈ ℝ) |
| 17 | simpr 110 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 0 < (abs‘𝐴)) | |
| 18 | 16, 17 | gt0ap0d 8744 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) # 0) |
| 19 | abs00ap 11539 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | |
| 20 | 3, 13, 19 | 3syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) |
| 21 | 18, 20 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 # 0) |
| 22 | 0re 8114 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 23 | reaplt 8703 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
| 24 | 3, 22, 23 | sylancl 413 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
| 25 | 21, 24 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 26 | 12, 25 | ecased 1364 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 < 0) |
| 27 | axltwlin 8182 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) | |
| 28 | 22, 27 | mp3an3 1341 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
| 29 | 15, 28 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
| 30 | 29 | imp 124 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))) |
| 31 | 1, 26, 30 | mpjaodan 802 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 ℂcc 7965 ℝcr 7966 0cc0 7967 < clt 8149 ≤ cle 8150 # cap 8696 abscabs 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-rp 9818 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 |
| This theorem is referenced by: abslt 11565 absle 11566 maxabslemlub 11684 |
| Copyright terms: Public domain | W3C validator |