![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltabs | GIF version |
Description: A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.) |
Ref | Expression |
---|---|
ltabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 𝐴 < 0) → 𝐴 < 0) | |
2 | simpllr 506 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < (abs‘𝐴)) | |
3 | simpll 501 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 ∈ ℝ) | |
4 | 3 | adantr 272 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
5 | 0red 7685 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
6 | simpr 109 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 < 𝐴) | |
7 | 5, 4, 6 | ltled 7798 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
8 | absid 10729 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
9 | 4, 7, 8 | syl2anc 406 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
10 | 2, 9 | breqtrd 3917 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < 𝐴) |
11 | 4 | ltnrd 7792 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴) |
12 | 10, 11 | pm2.65da 633 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ¬ 0 < 𝐴) |
13 | recn 7671 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | abscl 10709 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
16 | 15 | ad2antrr 477 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) ∈ ℝ) |
17 | simpr 109 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 0 < (abs‘𝐴)) | |
18 | 16, 17 | gt0ap0d 8303 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) # 0) |
19 | abs00ap 10720 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | |
20 | 3, 13, 19 | 3syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) |
21 | 18, 20 | mpbid 146 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 # 0) |
22 | 0re 7684 | . . . . 5 ⊢ 0 ∈ ℝ | |
23 | reaplt 8262 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
24 | 3, 22, 23 | sylancl 407 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
25 | 21, 24 | mpbid 146 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < 𝐴)) |
26 | 12, 25 | ecased 1308 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 < 0) |
27 | axltwlin 7750 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) | |
28 | 22, 27 | mp3an3 1285 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
29 | 15, 28 | mpdan 415 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
30 | 29 | imp 123 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))) |
31 | 1, 26, 30 | mpjaodan 770 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 680 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 ‘cfv 5079 ℂcc 7539 ℝcr 7540 0cc0 7541 < clt 7718 ≤ cle 7719 # cap 8255 abscabs 10655 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 ax-arch 7658 ax-caucvg 7659 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-po 4176 df-iso 4177 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-frec 6240 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-inn 8625 df-2 8683 df-3 8684 df-4 8685 df-n0 8876 df-z 8953 df-uz 9223 df-rp 9338 df-seqfrec 10106 df-exp 10180 df-cj 10501 df-re 10502 df-im 10503 df-rsqrt 10656 df-abs 10657 |
This theorem is referenced by: abslt 10746 absle 10747 maxabslemlub 10865 |
Copyright terms: Public domain | W3C validator |