| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltabs | GIF version | ||
| Description: A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| ltabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 𝐴 < 0) → 𝐴 < 0) | |
| 2 | simpllr 534 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < (abs‘𝐴)) | |
| 3 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 ∈ ℝ) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
| 5 | 0red 8080 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
| 6 | simpr 110 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 7 | 5, 4, 6 | ltled 8198 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
| 8 | absid 11426 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
| 9 | 4, 7, 8 | syl2anc 411 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
| 10 | 2, 9 | breqtrd 4073 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < 𝐴) |
| 11 | 4 | ltnrd 8191 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴) |
| 12 | 10, 11 | pm2.65da 663 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ¬ 0 < 𝐴) |
| 13 | recn 8065 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 14 | abscl 11406 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
| 16 | 15 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) ∈ ℝ) |
| 17 | simpr 110 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 0 < (abs‘𝐴)) | |
| 18 | 16, 17 | gt0ap0d 8709 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) # 0) |
| 19 | abs00ap 11417 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | |
| 20 | 3, 13, 19 | 3syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) |
| 21 | 18, 20 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 # 0) |
| 22 | 0re 8079 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 23 | reaplt 8668 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
| 24 | 3, 22, 23 | sylancl 413 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
| 25 | 21, 24 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 26 | 12, 25 | ecased 1362 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 < 0) |
| 27 | axltwlin 8147 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) | |
| 28 | 22, 27 | mp3an3 1339 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
| 29 | 15, 28 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
| 30 | 29 | imp 124 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))) |
| 31 | 1, 26, 30 | mpjaodan 800 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 ℂcc 7930 ℝcr 7931 0cc0 7932 < clt 8114 ≤ cle 8115 # cap 8661 abscabs 11352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-rp 9783 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 |
| This theorem is referenced by: abslt 11443 absle 11444 maxabslemlub 11562 |
| Copyright terms: Public domain | W3C validator |