![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltabs | GIF version |
Description: A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.) |
Ref | Expression |
---|---|
ltabs | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 𝐴 < 0) → 𝐴 < 0) | |
2 | simpllr 534 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < (abs‘𝐴)) | |
3 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 ∈ ℝ) | |
4 | 3 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
5 | 0red 7960 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
6 | simpr 110 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 < 𝐴) | |
7 | 5, 4, 6 | ltled 8078 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
8 | absid 11082 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
9 | 4, 7, 8 | syl2anc 411 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
10 | 2, 9 | breqtrd 4031 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < 𝐴) |
11 | 4 | ltnrd 8071 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴) |
12 | 10, 11 | pm2.65da 661 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ¬ 0 < 𝐴) |
13 | recn 7946 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | abscl 11062 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
16 | 15 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) ∈ ℝ) |
17 | simpr 110 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 0 < (abs‘𝐴)) | |
18 | 16, 17 | gt0ap0d 8588 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) # 0) |
19 | abs00ap 11073 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | |
20 | 3, 13, 19 | 3syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) |
21 | 18, 20 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 # 0) |
22 | 0re 7959 | . . . . 5 ⊢ 0 ∈ ℝ | |
23 | reaplt 8547 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
24 | 3, 22, 23 | sylancl 413 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
25 | 21, 24 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < 𝐴)) |
26 | 12, 25 | ecased 1349 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 < 0) |
27 | axltwlin 8027 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) | |
28 | 22, 27 | mp3an3 1326 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
29 | 15, 28 | mpdan 421 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))) |
30 | 29 | imp 124 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))) |
31 | 1, 26, 30 | mpjaodan 798 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 ℂcc 7811 ℝcr 7812 0cc0 7813 < clt 7994 ≤ cle 7995 # cap 8540 abscabs 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 |
This theorem is referenced by: abslt 11099 absle 11100 maxabslemlub 11218 |
Copyright terms: Public domain | W3C validator |