Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  refeq GIF version

Theorem refeq 13741
Description: Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
refeq.f (𝜑𝐹:ℝ⟶ℝ)
refeq.g (𝜑𝐺:ℝ⟶ℝ)
refeq.lt0 (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
refeq.gt0 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
refeq.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
Assertion
Ref Expression
refeq (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem refeq
StepHypRef Expression
1 refeq.f . . 3 (𝜑𝐹:ℝ⟶ℝ)
21ffnd 5332 . 2 (𝜑𝐹 Fn ℝ)
3 refeq.g . . 3 (𝜑𝐺:ℝ⟶ℝ)
43ffnd 5332 . 2 (𝜑𝐺 Fn ℝ)
5 refeq.0 . . . . . 6 (𝜑 → (𝐹‘0) = (𝐺‘0))
65ad2antrr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹‘0) = (𝐺‘0))
7 simplr 520 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 𝑥 ∈ ℝ)
8 0red 7891 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 0 ∈ ℝ)
9 simpr 109 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) # (𝐺𝑥))
101ffvelrnda 5614 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1110recnd 7918 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
1211adantr 274 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) ∈ ℂ)
133ffvelrnda 5614 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
1413recnd 7918 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
1514adantr 274 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐺𝑥) ∈ ℂ)
16 apne 8512 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → ((𝐹𝑥) # (𝐺𝑥) → (𝐹𝑥) ≠ (𝐺𝑥)))
1712, 15, 16syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ((𝐹𝑥) # (𝐺𝑥) → (𝐹𝑥) ≠ (𝐺𝑥)))
189, 17mpd 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) ≠ (𝐺𝑥))
1918neneqd 2355 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ¬ (𝐹𝑥) = (𝐺𝑥))
20 refeq.gt0 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
2120r19.21bi 2552 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
2221adantr 274 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
2319, 22mtod 653 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ¬ 0 < 𝑥)
247, 8, 23nltled 8010 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 𝑥 ≤ 0)
25 refeq.lt0 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
2625r19.21bi 2552 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
2726adantr 274 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
2819, 27mtod 653 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ¬ 𝑥 < 0)
298, 7, 28nltled 8010 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 0 ≤ 𝑥)
307, 8letri3d 8005 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝑥 = 0 ↔ (𝑥 ≤ 0 ∧ 0 ≤ 𝑥)))
3124, 29, 30mpbir2and 933 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 𝑥 = 0)
3231fveq2d 5484 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) = (𝐹‘0))
3331fveq2d 5484 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐺𝑥) = (𝐺‘0))
346, 32, 333eqtr4d 2207 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) = (𝐺𝑥))
3534, 19pm2.65da 651 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ (𝐹𝑥) # (𝐺𝑥))
36 apti 8511 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → ((𝐹𝑥) = (𝐺𝑥) ↔ ¬ (𝐹𝑥) # (𝐺𝑥)))
3711, 14, 36syl2anc 409 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) = (𝐺𝑥) ↔ ¬ (𝐹𝑥) # (𝐺𝑥)))
3835, 37mpbird 166 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐺𝑥))
392, 4, 38eqfnfvd 5580 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wne 2334  wral 2442   class class class wbr 3976  wf 5178  cfv 5182  cc 7742  cr 7743  0cc0 7744   < clt 7924  cle 7925   # cap 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator