Proof of Theorem refeq
Step | Hyp | Ref
| Expression |
1 | | refeq.f |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | 1 | ffnd 5348 |
. 2
⊢ (𝜑 → 𝐹 Fn ℝ) |
3 | | refeq.g |
. . 3
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
4 | 3 | ffnd 5348 |
. 2
⊢ (𝜑 → 𝐺 Fn ℝ) |
5 | | refeq.0 |
. . . . . 6
⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) |
6 | 5 | ad2antrr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘0) = (𝐺‘0)) |
7 | | simplr 525 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 𝑥 ∈ ℝ) |
8 | | 0red 7921 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 0 ∈ ℝ) |
9 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) # (𝐺‘𝑥)) |
10 | 1 | ffvelrnda 5631 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
11 | 10 | recnd 7948 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℂ) |
12 | 11 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) ∈ ℂ) |
13 | 3 | ffvelrnda 5631 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℝ) |
14 | 13 | recnd 7948 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℂ) |
15 | 14 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐺‘𝑥) ∈ ℂ) |
16 | | apne 8542 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) → ((𝐹‘𝑥) # (𝐺‘𝑥) → (𝐹‘𝑥) ≠ (𝐺‘𝑥))) |
17 | 12, 15, 16 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ((𝐹‘𝑥) # (𝐺‘𝑥) → (𝐹‘𝑥) ≠ (𝐺‘𝑥))) |
18 | 9, 17 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
19 | 18 | neneqd 2361 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ¬ (𝐹‘𝑥) = (𝐺‘𝑥)) |
20 | | refeq.gt0 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
21 | 20 | r19.21bi 2558 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
22 | 21 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
23 | 19, 22 | mtod 658 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ¬ 0 < 𝑥) |
24 | 7, 8, 23 | nltled 8040 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 𝑥 ≤ 0) |
25 | | refeq.lt0 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
26 | 25 | r19.21bi 2558 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
27 | 26 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) |
28 | 19, 27 | mtod 658 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ¬ 𝑥 < 0) |
29 | 8, 7, 28 | nltled 8040 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 0 ≤ 𝑥) |
30 | 7, 8 | letri3d 8035 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝑥 = 0 ↔ (𝑥 ≤ 0 ∧ 0 ≤ 𝑥))) |
31 | 24, 29, 30 | mpbir2and 939 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 𝑥 = 0) |
32 | 31 | fveq2d 5500 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) = (𝐹‘0)) |
33 | 31 | fveq2d 5500 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐺‘𝑥) = (𝐺‘0)) |
34 | 6, 32, 33 | 3eqtr4d 2213 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
35 | 34, 19 | pm2.65da 656 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ¬ (𝐹‘𝑥) # (𝐺‘𝑥)) |
36 | | apti 8541 |
. . . 4
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ ¬ (𝐹‘𝑥) # (𝐺‘𝑥))) |
37 | 11, 14, 36 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ ¬ (𝐹‘𝑥) # (𝐺‘𝑥))) |
38 | 35, 37 | mpbird 166 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
39 | 2, 4, 38 | eqfnfvd 5596 |
1
⊢ (𝜑 → 𝐹 = 𝐺) |