Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  refeq GIF version

Theorem refeq 14425
Description: Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
refeq.f (𝜑𝐹:ℝ⟶ℝ)
refeq.g (𝜑𝐺:ℝ⟶ℝ)
refeq.lt0 (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
refeq.gt0 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
refeq.0 (𝜑 → (𝐹‘0) = (𝐺‘0))
Assertion
Ref Expression
refeq (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem refeq
StepHypRef Expression
1 refeq.f . . 3 (𝜑𝐹:ℝ⟶ℝ)
21ffnd 5362 . 2 (𝜑𝐹 Fn ℝ)
3 refeq.g . . 3 (𝜑𝐺:ℝ⟶ℝ)
43ffnd 5362 . 2 (𝜑𝐺 Fn ℝ)
5 refeq.0 . . . . . 6 (𝜑 → (𝐹‘0) = (𝐺‘0))
65ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹‘0) = (𝐺‘0))
7 simplr 528 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 𝑥 ∈ ℝ)
8 0red 7946 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 0 ∈ ℝ)
9 simpr 110 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) # (𝐺𝑥))
101ffvelcdmda 5647 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1110recnd 7973 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
1211adantr 276 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) ∈ ℂ)
133ffvelcdmda 5647 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
1413recnd 7973 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
1514adantr 276 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐺𝑥) ∈ ℂ)
16 apne 8567 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → ((𝐹𝑥) # (𝐺𝑥) → (𝐹𝑥) ≠ (𝐺𝑥)))
1712, 15, 16syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ((𝐹𝑥) # (𝐺𝑥) → (𝐹𝑥) ≠ (𝐺𝑥)))
189, 17mpd 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) ≠ (𝐺𝑥))
1918neneqd 2368 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ¬ (𝐹𝑥) = (𝐺𝑥))
20 refeq.gt0 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
2120r19.21bi 2565 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
2221adantr 276 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))
2319, 22mtod 663 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ¬ 0 < 𝑥)
247, 8, 23nltled 8065 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 𝑥 ≤ 0)
25 refeq.lt0 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
2625r19.21bi 2565 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
2726adantr 276 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))
2819, 27mtod 663 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → ¬ 𝑥 < 0)
298, 7, 28nltled 8065 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 0 ≤ 𝑥)
307, 8letri3d 8060 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝑥 = 0 ↔ (𝑥 ≤ 0 ∧ 0 ≤ 𝑥)))
3124, 29, 30mpbir2and 944 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → 𝑥 = 0)
3231fveq2d 5515 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) = (𝐹‘0))
3331fveq2d 5515 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐺𝑥) = (𝐺‘0))
346, 32, 333eqtr4d 2220 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ (𝐹𝑥) # (𝐺𝑥)) → (𝐹𝑥) = (𝐺𝑥))
3534, 19pm2.65da 661 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ (𝐹𝑥) # (𝐺𝑥))
36 apti 8566 . . . 4 (((𝐹𝑥) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → ((𝐹𝑥) = (𝐺𝑥) ↔ ¬ (𝐹𝑥) # (𝐺𝑥)))
3711, 14, 36syl2anc 411 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) = (𝐺𝑥) ↔ ¬ (𝐹𝑥) # (𝐺𝑥)))
3835, 37mpbird 167 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐺𝑥))
392, 4, 38eqfnfvd 5612 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  wral 2455   class class class wbr 4000  wf 5208  cfv 5212  cc 7797  cr 7798  0cc0 7799   < clt 7979  cle 7980   # cap 8525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7890  ax-resscn 7891  ax-1cn 7892  ax-1re 7893  ax-icn 7894  ax-addcl 7895  ax-addrcl 7896  ax-mulcl 7897  ax-mulrcl 7898  ax-addcom 7899  ax-mulcom 7900  ax-addass 7901  ax-mulass 7902  ax-distr 7903  ax-i2m1 7904  ax-0lt1 7905  ax-1rid 7906  ax-0id 7907  ax-rnegex 7908  ax-precex 7909  ax-cnre 7910  ax-pre-ltirr 7911  ax-pre-lttrn 7913  ax-pre-apti 7914  ax-pre-ltadd 7915  ax-pre-mulgt0 7916
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7981  df-mnf 7982  df-xr 7983  df-ltxr 7984  df-le 7985  df-sub 8117  df-neg 8118  df-reap 8519  df-ap 8526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator