Proof of Theorem refeq
| Step | Hyp | Ref
 | Expression | 
| 1 |   | refeq.f | 
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | 
| 2 | 1 | ffnd 5408 | 
. 2
⊢ (𝜑 → 𝐹 Fn ℝ) | 
| 3 |   | refeq.g | 
. . 3
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) | 
| 4 | 3 | ffnd 5408 | 
. 2
⊢ (𝜑 → 𝐺 Fn ℝ) | 
| 5 |   | refeq.0 | 
. . . . . 6
⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) | 
| 6 | 5 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘0) = (𝐺‘0)) | 
| 7 |   | simplr 528 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 𝑥 ∈ ℝ) | 
| 8 |   | 0red 8027 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 0 ∈ ℝ) | 
| 9 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) # (𝐺‘𝑥)) | 
| 10 | 1 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | 
| 11 | 10 | recnd 8055 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℂ) | 
| 12 | 11 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) ∈ ℂ) | 
| 13 | 3 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℝ) | 
| 14 | 13 | recnd 8055 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) ∈ ℂ) | 
| 15 | 14 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐺‘𝑥) ∈ ℂ) | 
| 16 |   | apne 8650 | 
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) → ((𝐹‘𝑥) # (𝐺‘𝑥) → (𝐹‘𝑥) ≠ (𝐺‘𝑥))) | 
| 17 | 12, 15, 16 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ((𝐹‘𝑥) # (𝐺‘𝑥) → (𝐹‘𝑥) ≠ (𝐺‘𝑥))) | 
| 18 | 9, 17 | mpd 13 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) ≠ (𝐺‘𝑥)) | 
| 19 | 18 | neneqd 2388 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ¬ (𝐹‘𝑥) = (𝐺‘𝑥)) | 
| 20 |   | refeq.gt0 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 21 | 20 | r19.21bi 2585 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 22 | 21 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 23 | 19, 22 | mtod 664 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ¬ 0 < 𝑥) | 
| 24 | 7, 8, 23 | nltled 8147 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 𝑥 ≤ 0) | 
| 25 |   | refeq.lt0 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 26 | 25 | r19.21bi 2585 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 27 | 26 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 28 | 19, 27 | mtod 664 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → ¬ 𝑥 < 0) | 
| 29 | 8, 7, 28 | nltled 8147 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 0 ≤ 𝑥) | 
| 30 | 7, 8 | letri3d 8142 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝑥 = 0 ↔ (𝑥 ≤ 0 ∧ 0 ≤ 𝑥))) | 
| 31 | 24, 29, 30 | mpbir2and 946 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → 𝑥 = 0) | 
| 32 | 31 | fveq2d 5562 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) = (𝐹‘0)) | 
| 33 | 31 | fveq2d 5562 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐺‘𝑥) = (𝐺‘0)) | 
| 34 | 6, 32, 33 | 3eqtr4d 2239 | 
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐹‘𝑥) # (𝐺‘𝑥)) → (𝐹‘𝑥) = (𝐺‘𝑥)) | 
| 35 | 34, 19 | pm2.65da 662 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ¬ (𝐹‘𝑥) # (𝐺‘𝑥)) | 
| 36 |   | apti 8649 | 
. . . 4
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ ¬ (𝐹‘𝑥) # (𝐺‘𝑥))) | 
| 37 | 11, 14, 36 | syl2anc 411 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ ¬ (𝐹‘𝑥) # (𝐺‘𝑥))) | 
| 38 | 35, 37 | mpbird 167 | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐺‘𝑥)) | 
| 39 | 2, 4, 38 | eqfnfvd 5662 | 
1
⊢ (𝜑 → 𝐹 = 𝐺) |