ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexuz GIF version

Theorem rexuz 9645
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
rexuz (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem rexuz
StepHypRef Expression
1 eluz1 9596 . . . 4 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
21anbi1d 465 . . 3 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀𝑛) ∧ 𝜑)))
3 anass 401 . . 3 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀𝑛𝜑)))
42, 3bitrdi 196 . 2 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) ↔ (𝑛 ∈ ℤ ∧ (𝑀𝑛𝜑))))
54rexbidv2 2497 1 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wrex 2473   class class class wbr 4029  cfv 5254  cle 8055  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-neg 8193  df-z 9318  df-uz 9593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator