| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10657 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | frecex 6530 | . . 3 ⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V | |
| 3 | 2 | rnex 4988 | . 2 ⊢ ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V |
| 4 | 1, 3 | eqeltri 2302 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 〈cop 3669 ran crn 4717 ‘cfv 5314 (class class class)co 5994 ∈ cmpo 5996 freccfrec 6526 1c1 7988 + caddc 7990 ℤ≥cuz 9710 seqcseq 10656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-recs 6441 df-frec 6527 df-seqfrec 10657 |
| This theorem is referenced by: seq3shft 11335 clim2ser 11834 clim2ser2 11835 isermulc2 11837 iser3shft 11843 fsum3cvg 11875 sumrbdc 11876 isumclim3 11920 sumnul 11921 isumadd 11928 trireciplem 11997 geolim 12008 geolim2 12009 geo2lim 12013 geoisum1c 12017 mertensabs 12034 clim2prod 12036 clim2divap 12037 ntrivcvgap 12045 fproddccvg 12069 prodrbdclem2 12070 fprodntrivap 12081 efcj 12170 eftlub 12187 eflegeo 12198 nninfdc 13010 gsumfzval 13410 gsumval2 13416 mulgfvalg 13644 trilpolemisumle 16337 trilpolemeq1 16339 |
| Copyright terms: Public domain | W3C validator |