ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqex GIF version

Theorem seqex 10679
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqex seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10678 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 frecex 6546 . . 3 frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) ∈ V
32rnex 4992 . 2 ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) ∈ V
41, 3eqeltri 2302 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cop 3669  ran crn 4720  cfv 5318  (class class class)co 6007  cmpo 6009  freccfrec 6542  1c1 8008   + caddc 8010  cuz 9730  seqcseq 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6457  df-frec 6543  df-seqfrec 10678
This theorem is referenced by:  seq3shft  11357  clim2ser  11856  clim2ser2  11857  isermulc2  11859  iser3shft  11865  fsum3cvg  11897  sumrbdc  11898  isumclim3  11942  sumnul  11943  isumadd  11950  trireciplem  12019  geolim  12030  geolim2  12031  geo2lim  12035  geoisum1c  12039  mertensabs  12056  clim2prod  12058  clim2divap  12059  ntrivcvgap  12067  fproddccvg  12091  prodrbdclem2  12092  fprodntrivap  12103  efcj  12192  eftlub  12209  eflegeo  12220  nninfdc  13032  gsumfzval  13432  gsumval2  13438  mulgfvalg  13666  trilpolemisumle  16436  trilpolemeq1  16438
  Copyright terms: Public domain W3C validator