| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10678 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | frecex 6546 | . . 3 ⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V | |
| 3 | 2 | rnex 4992 | . 2 ⊢ ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V |
| 4 | 1, 3 | eqeltri 2302 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 〈cop 3669 ran crn 4720 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 freccfrec 6542 1c1 8008 + caddc 8010 ℤ≥cuz 9730 seqcseq 10677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6457 df-frec 6543 df-seqfrec 10678 |
| This theorem is referenced by: seq3shft 11357 clim2ser 11856 clim2ser2 11857 isermulc2 11859 iser3shft 11865 fsum3cvg 11897 sumrbdc 11898 isumclim3 11942 sumnul 11943 isumadd 11950 trireciplem 12019 geolim 12030 geolim2 12031 geo2lim 12035 geoisum1c 12039 mertensabs 12056 clim2prod 12058 clim2divap 12059 ntrivcvgap 12067 fproddccvg 12091 prodrbdclem2 12092 fprodntrivap 12103 efcj 12192 eftlub 12209 eflegeo 12220 nninfdc 13032 gsumfzval 13432 gsumval2 13438 mulgfvalg 13666 trilpolemisumle 16436 trilpolemeq1 16438 |
| Copyright terms: Public domain | W3C validator |