ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqex GIF version

Theorem seqex 10520
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqex seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10519 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 frecex 6447 . . 3 frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) ∈ V
32rnex 4929 . 2 ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) ∈ V
41, 3eqeltri 2266 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  cop 3621  ran crn 4660  cfv 5254  (class class class)co 5918  cmpo 5920  freccfrec 6443  1c1 7873   + caddc 7875  cuz 9592  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358  df-frec 6444  df-seqfrec 10519
This theorem is referenced by:  seq3shft  10982  clim2ser  11480  clim2ser2  11481  isermulc2  11483  iser3shft  11489  fsum3cvg  11521  sumrbdc  11522  isumclim3  11566  sumnul  11567  isumadd  11574  trireciplem  11643  geolim  11654  geolim2  11655  geo2lim  11659  geoisum1c  11663  mertensabs  11680  clim2prod  11682  clim2divap  11683  ntrivcvgap  11691  fproddccvg  11715  prodrbdclem2  11716  fprodntrivap  11727  efcj  11816  eftlub  11833  eflegeo  11844  nninfdc  12610  gsumfzval  12974  gsumval2  12980  mulgfvalg  13191  trilpolemisumle  15528  trilpolemeq1  15530
  Copyright terms: Public domain W3C validator