ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqex GIF version

Theorem seqex 10378
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqex seq𝑀( + , 𝐹) ∈ V

Proof of Theorem seqex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10377 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 frecex 6358 . . 3 frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) ∈ V
32rnex 4870 . 2 ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) ∈ V
41, 3eqeltri 2238 1 seq𝑀( + , 𝐹) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2725  cop 3578  ran crn 4604  cfv 5187  (class class class)co 5841  cmpo 5843  freccfrec 6354  1c1 7750   + caddc 7752  cuz 9462  seqcseq 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-iord 4343  df-on 4345  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-recs 6269  df-frec 6355  df-seqfrec 10377
This theorem is referenced by:  seq3shft  10776  clim2ser  11274  clim2ser2  11275  isermulc2  11277  iser3shft  11283  fsum3cvg  11315  sumrbdc  11316  isumclim3  11360  sumnul  11361  isumadd  11368  trireciplem  11437  geolim  11448  geolim2  11449  geo2lim  11453  geoisum1c  11457  mertensabs  11474  clim2prod  11476  clim2divap  11477  ntrivcvgap  11485  fproddccvg  11509  prodrbdclem2  11510  fprodntrivap  11521  efcj  11610  eftlub  11627  eflegeo  11638  nninfdc  12382  trilpolemisumle  13877  trilpolemeq1  13879
  Copyright terms: Public domain W3C validator