Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqex | GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seqfrec 10402 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
2 | frecex 6373 | . . 3 ⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V | |
3 | 2 | rnex 4878 | . 2 ⊢ ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V |
4 | 1, 3 | eqeltri 2243 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 〈cop 3586 ran crn 4612 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 freccfrec 6369 1c1 7775 + caddc 7777 ℤ≥cuz 9487 seqcseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 df-frec 6370 df-seqfrec 10402 |
This theorem is referenced by: seq3shft 10802 clim2ser 11300 clim2ser2 11301 isermulc2 11303 iser3shft 11309 fsum3cvg 11341 sumrbdc 11342 isumclim3 11386 sumnul 11387 isumadd 11394 trireciplem 11463 geolim 11474 geolim2 11475 geo2lim 11479 geoisum1c 11483 mertensabs 11500 clim2prod 11502 clim2divap 11503 ntrivcvgap 11511 fproddccvg 11535 prodrbdclem2 11536 fprodntrivap 11547 efcj 11636 eftlub 11653 eflegeo 11664 nninfdc 12408 trilpolemisumle 14070 trilpolemeq1 14072 |
Copyright terms: Public domain | W3C validator |