| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1042 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl1l 1072 simpr1l 1078 simp11l 1132 simp21l 1138 simp31l 1144 en2lp 4646 tfisi 4679 funprg 5371 nnsucsssuc 6646 ecopovtrn 6787 ecopovtrng 6790 addassnqg 7577 distrnqg 7582 ltsonq 7593 ltanqg 7595 ltmnqg 7596 distrnq0 7654 addassnq0 7657 mulasssrg 7953 distrsrg 7954 lttrsr 7957 ltsosr 7959 ltasrg 7965 mulextsr1lem 7975 mulextsr1 7976 axmulass 8068 axdistr 8069 dmdcanap 8877 lt2msq1 9040 ltdiv2 9042 lediv2 9046 xaddass 10073 xaddass2 10074 xlt2add 10084 modqdi 10622 expaddzaplem 10812 expaddzap 10813 expmulzap 10815 swrdspsleq 11207 pfxeq 11236 ccatopth2 11257 pfxccat3 11274 resqrtcl 11548 bdtrilem 11758 bdtri 11759 xrbdtri 11795 bitsfzo 12474 prmexpb 12681 4sqlem18 12939 subgabl 13877 opprringbg 14051 cnptoprest 14921 ssblps 15107 ssbl 15108 plyadd 15433 plymul 15434 rplogbchbase 15632 rplogbreexp 15635 relogbcxpbap 15647 lgssq 15727 uhgr2edg 16012 |
| Copyright terms: Public domain | W3C validator |