Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | 3ad2ant1 1008 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl1l 1038 simpr1l 1044 simp11l 1098 simp21l 1104 simp31l 1110 en2lp 4531 tfisi 4564 funprg 5238 nnsucsssuc 6460 ecopovtrn 6598 ecopovtrng 6601 addassnqg 7323 distrnqg 7328 ltsonq 7339 ltanqg 7341 ltmnqg 7342 distrnq0 7400 addassnq0 7403 mulasssrg 7699 distrsrg 7700 lttrsr 7703 ltsosr 7705 ltasrg 7711 mulextsr1lem 7721 mulextsr1 7722 axmulass 7814 axdistr 7815 dmdcanap 8618 lt2msq1 8780 ltdiv2 8782 lediv2 8786 xaddass 9805 xaddass2 9806 xlt2add 9816 modqdi 10327 expaddzaplem 10498 expaddzap 10499 expmulzap 10501 resqrtcl 10971 bdtrilem 11180 bdtri 11181 xrbdtri 11217 prmexpb 12083 cnptoprest 12879 ssblps 13065 ssbl 13066 rplogbchbase 13508 rplogbreexp 13511 relogbcxpbap 13523 lgssq 13581 |
Copyright terms: Public domain | W3C validator |