![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | 3ad2ant1 970 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 930 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 932 |
This theorem is referenced by: simpl1l 1000 simpr1l 1006 simp11l 1060 simp21l 1066 simp31l 1072 en2lp 4407 tfisi 4439 funprg 5109 nnsucsssuc 6318 ecopovtrn 6456 ecopovtrng 6459 addassnqg 7091 distrnqg 7096 ltsonq 7107 ltanqg 7109 ltmnqg 7110 distrnq0 7168 addassnq0 7171 mulasssrg 7454 distrsrg 7455 lttrsr 7458 ltsosr 7460 ltasrg 7466 mulextsr1lem 7475 mulextsr1 7476 axmulass 7558 axdistr 7559 dmdcanap 8343 lt2msq1 8501 ltdiv2 8503 lediv2 8507 xaddass 9493 xaddass2 9494 xlt2add 9504 modqdi 10006 expaddzaplem 10177 expaddzap 10178 expmulzap 10180 resqrtcl 10641 bdtrilem 10849 bdtri 10850 xrbdtri 10884 prmexpb 11622 cnptoprest 12189 ssblps 12353 ssbl 12354 |
Copyright terms: Public domain | W3C validator |