![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl1l 1050 simpr1l 1056 simp11l 1110 simp21l 1116 simp31l 1122 en2lp 4586 tfisi 4619 funprg 5304 nnsucsssuc 6545 ecopovtrn 6686 ecopovtrng 6689 addassnqg 7442 distrnqg 7447 ltsonq 7458 ltanqg 7460 ltmnqg 7461 distrnq0 7519 addassnq0 7522 mulasssrg 7818 distrsrg 7819 lttrsr 7822 ltsosr 7824 ltasrg 7830 mulextsr1lem 7840 mulextsr1 7841 axmulass 7933 axdistr 7934 dmdcanap 8741 lt2msq1 8904 ltdiv2 8906 lediv2 8910 xaddass 9935 xaddass2 9936 xlt2add 9946 modqdi 10463 expaddzaplem 10653 expaddzap 10654 expmulzap 10656 resqrtcl 11173 bdtrilem 11382 bdtri 11383 xrbdtri 11419 prmexpb 12289 4sqlem18 12546 subgabl 13402 opprringbg 13576 cnptoprest 14407 ssblps 14593 ssbl 14594 plyadd 14897 plymul 14898 rplogbchbase 15082 rplogbreexp 15085 relogbcxpbap 15097 lgssq 15156 |
Copyright terms: Public domain | W3C validator |