| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1042 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl1l 1072 simpr1l 1078 simp11l 1132 simp21l 1138 simp31l 1144 en2lp 4643 tfisi 4676 funprg 5367 nnsucsssuc 6628 ecopovtrn 6769 ecopovtrng 6772 addassnqg 7557 distrnqg 7562 ltsonq 7573 ltanqg 7575 ltmnqg 7576 distrnq0 7634 addassnq0 7637 mulasssrg 7933 distrsrg 7934 lttrsr 7937 ltsosr 7939 ltasrg 7945 mulextsr1lem 7955 mulextsr1 7956 axmulass 8048 axdistr 8049 dmdcanap 8857 lt2msq1 9020 ltdiv2 9022 lediv2 9026 xaddass 10053 xaddass2 10054 xlt2add 10064 modqdi 10601 expaddzaplem 10791 expaddzap 10792 expmulzap 10794 swrdspsleq 11185 pfxeq 11214 ccatopth2 11235 pfxccat3 11252 resqrtcl 11526 bdtrilem 11736 bdtri 11737 xrbdtri 11773 bitsfzo 12452 prmexpb 12659 4sqlem18 12917 subgabl 13855 opprringbg 14029 cnptoprest 14898 ssblps 15084 ssbl 15085 plyadd 15410 plymul 15411 rplogbchbase 15609 rplogbreexp 15612 relogbcxpbap 15624 lgssq 15704 uhgr2edg 15989 |
| Copyright terms: Public domain | W3C validator |