![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl1l 1050 simpr1l 1056 simp11l 1110 simp21l 1116 simp31l 1122 en2lp 4587 tfisi 4620 funprg 5305 nnsucsssuc 6547 ecopovtrn 6688 ecopovtrng 6691 addassnqg 7444 distrnqg 7449 ltsonq 7460 ltanqg 7462 ltmnqg 7463 distrnq0 7521 addassnq0 7524 mulasssrg 7820 distrsrg 7821 lttrsr 7824 ltsosr 7826 ltasrg 7832 mulextsr1lem 7842 mulextsr1 7843 axmulass 7935 axdistr 7936 dmdcanap 8743 lt2msq1 8906 ltdiv2 8908 lediv2 8912 xaddass 9938 xaddass2 9939 xlt2add 9949 modqdi 10466 expaddzaplem 10656 expaddzap 10657 expmulzap 10659 resqrtcl 11176 bdtrilem 11385 bdtri 11386 xrbdtri 11422 prmexpb 12292 4sqlem18 12549 subgabl 13405 opprringbg 13579 cnptoprest 14418 ssblps 14604 ssbl 14605 plyadd 14930 plymul 14931 rplogbchbase 15123 rplogbreexp 15126 relogbcxpbap 15138 lgssq 15197 |
Copyright terms: Public domain | W3C validator |