| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl1l 1050 simpr1l 1056 simp11l 1110 simp21l 1116 simp31l 1122 en2lp 4590 tfisi 4623 funprg 5308 nnsucsssuc 6550 ecopovtrn 6691 ecopovtrng 6694 addassnqg 7449 distrnqg 7454 ltsonq 7465 ltanqg 7467 ltmnqg 7468 distrnq0 7526 addassnq0 7529 mulasssrg 7825 distrsrg 7826 lttrsr 7829 ltsosr 7831 ltasrg 7837 mulextsr1lem 7847 mulextsr1 7848 axmulass 7940 axdistr 7941 dmdcanap 8749 lt2msq1 8912 ltdiv2 8914 lediv2 8918 xaddass 9944 xaddass2 9945 xlt2add 9955 modqdi 10484 expaddzaplem 10674 expaddzap 10675 expmulzap 10677 resqrtcl 11194 bdtrilem 11404 bdtri 11405 xrbdtri 11441 bitsfzo 12119 prmexpb 12319 4sqlem18 12577 subgabl 13462 opprringbg 13636 cnptoprest 14475 ssblps 14661 ssbl 14662 plyadd 14987 plymul 14988 rplogbchbase 15186 rplogbreexp 15189 relogbcxpbap 15201 lgssq 15281 |
| Copyright terms: Public domain | W3C validator |