Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rplogbreexp | GIF version |
Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.) |
Ref | Expression |
---|---|
rplogbreexp | ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcxp 13178 | . . . . 5 ⊢ ((𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘(𝐶↑𝑐𝐸)) = (𝐸 · (log‘𝐶))) | |
2 | 1 | 3adant1 1000 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘(𝐶↑𝑐𝐸)) = (𝐸 · (log‘𝐶))) |
3 | 2 | oveq1d 5833 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵)) = ((𝐸 · (log‘𝐶)) / (log‘𝐵))) |
4 | simp3 984 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐸 ∈ ℝ) | |
5 | 4 | recnd 7889 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐸 ∈ ℂ) |
6 | simp2 983 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐶 ∈ ℝ+) | |
7 | 6 | relogcld 13163 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℝ) |
8 | 7 | recnd 7889 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℂ) |
9 | simp1l 1006 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐵 ∈ ℝ+) | |
10 | 9 | relogcld 13163 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐵) ∈ ℝ) |
11 | 10 | recnd 7889 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐵) ∈ ℂ) |
12 | simp1r 1007 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐵 # 1) | |
13 | 9, 12 | logrpap0d 13159 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐵) # 0) |
14 | 5, 8, 11, 13 | divassapd 8682 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵)))) |
15 | 3, 14 | eqtrd 2190 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵)))) |
16 | 6, 4 | rpcxpcld 13212 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐶↑𝑐𝐸) ∈ ℝ+) |
17 | rplogbval 13222 | . . 3 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ (𝐶↑𝑐𝐸) ∈ ℝ+) → (𝐵 logb (𝐶↑𝑐𝐸)) = ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵))) | |
18 | 9, 12, 16, 17 | syl3anc 1220 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵))) |
19 | rplogbval 13222 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝐶 ∈ ℝ+) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) | |
20 | 9, 12, 6, 19 | syl3anc 1220 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) |
21 | 20 | oveq2d 5834 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐸 · (𝐵 logb 𝐶)) = (𝐸 · ((log‘𝐶) / (log‘𝐵)))) |
22 | 15, 18, 21 | 3eqtr4d 2200 | 1 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 class class class wbr 3965 ‘cfv 5167 (class class class)co 5818 ℝcr 7714 1c1 7716 · cmul 7720 # cap 8439 / cdiv 8528 ℝ+crp 9542 logclog 13137 ↑𝑐ccxp 13138 logb clogb 13220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 ax-caucvg 7835 ax-pre-suploc 7836 ax-addf 7837 ax-mulf 7838 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-disj 3943 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-isom 5176 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-of 6026 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-frec 6332 df-1o 6357 df-oadd 6361 df-er 6473 df-map 6588 df-pm 6589 df-en 6679 df-dom 6680 df-fin 6681 df-sup 6920 df-inf 6921 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 df-uz 9423 df-q 9511 df-rp 9543 df-xneg 9661 df-xadd 9662 df-ioo 9778 df-ico 9780 df-icc 9781 df-fz 9895 df-fzo 10024 df-seqfrec 10327 df-exp 10401 df-fac 10582 df-bc 10604 df-ihash 10632 df-shft 10697 df-cj 10724 df-re 10725 df-im 10726 df-rsqrt 10880 df-abs 10881 df-clim 11158 df-sumdc 11233 df-ef 11527 df-e 11528 df-rest 12313 df-topgen 12332 df-psmet 12347 df-xmet 12348 df-met 12349 df-bl 12350 df-mopn 12351 df-top 12356 df-topon 12369 df-bases 12401 df-ntr 12456 df-cn 12548 df-cnp 12549 df-tx 12613 df-cncf 12918 df-limced 12985 df-dvap 12986 df-relog 13139 df-rpcxp 13140 df-logb 13221 |
This theorem is referenced by: rplogbzexp 13231 rprelogbmulexp 13233 rplogbcxp 13240 |
Copyright terms: Public domain | W3C validator |