![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rplogbreexp | GIF version |
Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.) |
Ref | Expression |
---|---|
rplogbreexp | ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcxp 15073 | . . . . 5 ⊢ ((𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘(𝐶↑𝑐𝐸)) = (𝐸 · (log‘𝐶))) | |
2 | 1 | 3adant1 1017 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘(𝐶↑𝑐𝐸)) = (𝐸 · (log‘𝐶))) |
3 | 2 | oveq1d 5934 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵)) = ((𝐸 · (log‘𝐶)) / (log‘𝐵))) |
4 | simp3 1001 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐸 ∈ ℝ) | |
5 | 4 | recnd 8050 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐸 ∈ ℂ) |
6 | simp2 1000 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐶 ∈ ℝ+) | |
7 | 6 | relogcld 15058 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℝ) |
8 | 7 | recnd 8050 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐶) ∈ ℂ) |
9 | simp1l 1023 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐵 ∈ ℝ+) | |
10 | 9 | relogcld 15058 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐵) ∈ ℝ) |
11 | 10 | recnd 8050 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐵) ∈ ℂ) |
12 | simp1r 1024 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → 𝐵 # 1) | |
13 | 9, 12 | logrpap0d 15054 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (log‘𝐵) # 0) |
14 | 5, 8, 11, 13 | divassapd 8847 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → ((𝐸 · (log‘𝐶)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵)))) |
15 | 3, 14 | eqtrd 2226 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵)) = (𝐸 · ((log‘𝐶) / (log‘𝐵)))) |
16 | 6, 4 | rpcxpcld 15107 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐶↑𝑐𝐸) ∈ ℝ+) |
17 | rplogbval 15118 | . . 3 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ (𝐶↑𝑐𝐸) ∈ ℝ+) → (𝐵 logb (𝐶↑𝑐𝐸)) = ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵))) | |
18 | 9, 12, 16, 17 | syl3anc 1249 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = ((log‘(𝐶↑𝑐𝐸)) / (log‘𝐵))) |
19 | rplogbval 15118 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝐶 ∈ ℝ+) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) | |
20 | 9, 12, 6, 19 | syl3anc 1249 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) |
21 | 20 | oveq2d 5935 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐸 · (𝐵 logb 𝐶)) = (𝐸 · ((log‘𝐶) / (log‘𝐵)))) |
22 | 15, 18, 21 | 3eqtr4d 2236 | 1 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 1c1 7875 · cmul 7879 # cap 8602 / cdiv 8693 ℝ+crp 9722 logclog 15032 ↑𝑐ccxp 15033 logb clogb 15116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-pre-suploc 7995 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-ico 9963 df-icc 9964 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-e 11795 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 df-relog 15034 df-rpcxp 15035 df-logb 15117 |
This theorem is referenced by: rplogbzexp 15127 rprelogbmulexp 15129 rplogbcxp 15136 |
Copyright terms: Public domain | W3C validator |