ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplogbchbase GIF version

Theorem rplogbchbase 15270
Description: Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.)
Assertion
Ref Expression
rplogbchbase (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴)))

Proof of Theorem rplogbchbase
StepHypRef Expression
1 simp3 1001 . . . . 5 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
21relogcld 15202 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝑋) ∈ ℝ)
32recnd 8072 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝑋) ∈ ℂ)
4 simp1l 1023 . . . . 5 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → 𝐴 ∈ ℝ+)
54relogcld 15202 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
65recnd 8072 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
7 simp2l 1025 . . . . 5 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ ℝ+)
87relogcld 15202 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
98recnd 8072 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝐵) ∈ ℂ)
10 simp1r 1024 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → 𝐴 # 1)
114, 10logrpap0d 15198 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝐴) # 0)
12 simp2r 1026 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → 𝐵 # 1)
137, 12logrpap0d 15198 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (log‘𝐵) # 0)
143, 6, 9, 11, 13divcanap7d 8863 . 2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (((log‘𝑋) / (log‘𝐵)) / ((log‘𝐴) / (log‘𝐵))) = ((log‘𝑋) / (log‘𝐴)))
15 rplogbval 15265 . . . 4 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
167, 12, 1, 15syl3anc 1249 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
17 rplogbval 15265 . . . 4 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝐴 ∈ ℝ+) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
187, 12, 4, 17syl3anc 1249 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
1916, 18oveq12d 5943 . 2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → ((𝐵 logb 𝑋) / (𝐵 logb 𝐴)) = (((log‘𝑋) / (log‘𝐵)) / ((log‘𝐴) / (log‘𝐵))))
20 rplogbval 15265 . . 3 ((𝐴 ∈ ℝ+𝐴 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((log‘𝑋) / (log‘𝐴)))
214, 10, 1, 20syl3anc 1249 . 2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((log‘𝑋) / (log‘𝐴)))
2214, 19, 213eqtr4rd 2240 1 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  1c1 7897   # cap 8625   / cdiv 8716  +crp 9745  logclog 15176   logb clogb 15263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-ioo 9984  df-ico 9986  df-icc 9987  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-e 11831  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891  df-limced 14976  df-dvap 14977  df-relog 15178  df-logb 15264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator