ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmexpb GIF version

Theorem prmexpb 12392
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
prmexpb (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))

Proof of Theorem prmexpb
StepHypRef Expression
1 prmz 12352 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
21adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℤ)
323ad2ant1 1020 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℤ)
4 simp2l 1025 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 ∈ ℕ)
5 iddvdsexp 12045 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ (𝑃𝑀))
63, 4, 5syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∥ (𝑃𝑀))
7 breq2 4047 . . . . . . 7 ((𝑃𝑀) = (𝑄𝑁) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 ∥ (𝑄𝑁)))
873ad2ant3 1022 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 ∥ (𝑄𝑁)))
9 simp1l 1023 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℙ)
10 simp1r 1024 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑄 ∈ ℙ)
11 simp2r 1026 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑁 ∈ ℕ)
12 prmdvdsexpb 12390 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
139, 10, 11, 12syl3anc 1249 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
148, 13bitrd 188 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 = 𝑄))
156, 14mpbid 147 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 = 𝑄)
163zred 9477 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℝ)
174nnzd 9476 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 ∈ ℤ)
1811nnzd 9476 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑁 ∈ ℤ)
19 prmgt1 12373 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
2019ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 < 𝑃)
21203adant3 1019 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 1 < 𝑃)
22 simp3 1001 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑀) = (𝑄𝑁))
2315oveq1d 5949 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑁) = (𝑄𝑁))
2422, 23eqtr4d 2240 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑀) = (𝑃𝑁))
2516, 17, 18, 21, 24expcand 10843 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 = 𝑁)
2615, 25jca 306 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 = 𝑄𝑀 = 𝑁))
27263expia 1207 . 2 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) → (𝑃 = 𝑄𝑀 = 𝑁)))
28 oveq12 5943 . 2 ((𝑃 = 𝑄𝑀 = 𝑁) → (𝑃𝑀) = (𝑄𝑁))
2927, 28impbid1 142 1 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5934  1c1 7908   < clt 8089  cn 9018  cz 9354  cexp 10664  cdvds 12017  cprime 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-er 6610  df-en 6818  df-sup 7068  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-dvds 12018  df-gcd 12194  df-prm 12349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator