ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzaplem GIF version

Theorem expaddzaplem 10791
Description: Lemma for expaddzap 10792. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzaplem (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddzaplem
StepHypRef Expression
1 simp1l 1045 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2 simp3 1023 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 expcl 10766 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
41, 2, 3syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
5 simp2r 1048 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ)
65nnnn0d 9410 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ0)
7 expcl 10766 . . . 4 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
81, 6, 7syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
9 simp1r 1046 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 # 0)
105nnzd 9556 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℤ)
11 expap0i 10780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) # 0)
121, 9, 10, 11syl3anc 1271 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) # 0)
134, 8, 12divrecap2d 8929 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) / (𝐴↑-𝑀)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
14 simp2l 1047 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
1514recnd 8163 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℂ)
1615negnegd 8436 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 = 𝑀)
17 nnnegz 9437 . . . . . . . . . 10 (-𝑀 ∈ ℕ → --𝑀 ∈ ℤ)
185, 17syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 ∈ ℤ)
1916, 18eqeltrrd 2307 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
202nn0zd 9555 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2119, 20zaddcld 9561 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
22 expclzap 10773 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
231, 9, 21, 22syl3anc 1271 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
2423adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
258adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
2612adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) # 0)
2724, 25, 26divcanap4d 8931 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = (𝐴↑(𝑀 + 𝑁)))
281adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
29 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
306adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℕ0)
31 expadd 10790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑀 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3228, 29, 30, 31syl3anc 1271 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3321zcnd 9558 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
3433, 15negsubd 8451 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
352nn0cnd 9412 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3615, 35pncan2d 8447 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3734, 36eqtrd 2262 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3837adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3938oveq2d 6010 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = (𝐴𝑁))
4032, 39eqtr3d 2264 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) = (𝐴𝑁))
4140oveq1d 6009 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
4227, 41eqtr3d 2264 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
431adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
449adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 # 0)
4533adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
46 simpr 110 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
47 expineg2 10757 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0)) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4843, 44, 45, 46, 47syl22anc 1272 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4921znegcld 9559 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℤ)
50 expclzap 10773 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -(𝑀 + 𝑁) ∈ ℤ) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
511, 9, 49, 50syl3anc 1271 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
5251adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
534adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
54 expap0i 10780 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) # 0)
551, 9, 20, 54syl3anc 1271 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) # 0)
5655adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) # 0)
5752, 53, 56divcanap4d 8931 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = (𝐴↑-(𝑀 + 𝑁)))
582adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0)
59 expadd 10790 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6043, 46, 58, 59syl3anc 1271 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6115, 35negdi2d 8459 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀𝑁))
6261oveq1d 6009 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = ((-𝑀𝑁) + 𝑁))
6315negcld 8432 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℂ)
6463, 35npcand 8449 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((-𝑀𝑁) + 𝑁) = -𝑀)
6562, 64eqtrd 2262 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6665adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6766oveq2d 6010 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = (𝐴↑-𝑀))
6860, 67eqtr3d 2264 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) = (𝐴↑-𝑀))
6968oveq1d 6009 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7057, 69eqtr3d 2264 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7170oveq2d 6010 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = (1 / ((𝐴↑-𝑀) / (𝐴𝑁))))
728, 4, 12, 55recdivapd 8942 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7372adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7471, 73eqtrd 2262 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7548, 74eqtrd 2262 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
76 elznn0 9449 . . . . 5 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
7776simprbi 275 . . . 4 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7821, 77syl 14 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7942, 75, 78mpjaodan 803 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
80 expineg2 10757 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
811, 9, 15, 6, 80syl22anc 1272 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
8281oveq1d 6009 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑀) · (𝐴𝑁)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
8313, 79, 823eqtr4d 2272 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987  1c1 7988   + caddc 7990   · cmul 7992  cmin 8305  -cneg 8306   # cap 8716   / cdiv 8807  cn 9098  0cn0 9357  cz 9434  cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657  df-exp 10748
This theorem is referenced by:  expaddzap  10792
  Copyright terms: Public domain W3C validator