ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzaplem GIF version

Theorem expaddzaplem 10744
Description: Lemma for expaddzap 10745. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzaplem (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddzaplem
StepHypRef Expression
1 simp1l 1024 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2 simp3 1002 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 expcl 10719 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
41, 2, 3syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
5 simp2r 1027 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ)
65nnnn0d 9363 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ0)
7 expcl 10719 . . . 4 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
81, 6, 7syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
9 simp1r 1025 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 # 0)
105nnzd 9509 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℤ)
11 expap0i 10733 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) # 0)
121, 9, 10, 11syl3anc 1250 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) # 0)
134, 8, 12divrecap2d 8882 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) / (𝐴↑-𝑀)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
14 simp2l 1026 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
1514recnd 8116 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℂ)
1615negnegd 8389 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 = 𝑀)
17 nnnegz 9390 . . . . . . . . . 10 (-𝑀 ∈ ℕ → --𝑀 ∈ ℤ)
185, 17syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 ∈ ℤ)
1916, 18eqeltrrd 2284 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
202nn0zd 9508 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2119, 20zaddcld 9514 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
22 expclzap 10726 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
231, 9, 21, 22syl3anc 1250 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
2423adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
258adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
2612adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) # 0)
2724, 25, 26divcanap4d 8884 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = (𝐴↑(𝑀 + 𝑁)))
281adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
29 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
306adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℕ0)
31 expadd 10743 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑀 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3228, 29, 30, 31syl3anc 1250 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3321zcnd 9511 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
3433, 15negsubd 8404 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
352nn0cnd 9365 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3615, 35pncan2d 8400 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3734, 36eqtrd 2239 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3837adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3938oveq2d 5972 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = (𝐴𝑁))
4032, 39eqtr3d 2241 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) = (𝐴𝑁))
4140oveq1d 5971 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
4227, 41eqtr3d 2241 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
431adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
449adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 # 0)
4533adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
46 simpr 110 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
47 expineg2 10710 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0)) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4843, 44, 45, 46, 47syl22anc 1251 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4921znegcld 9512 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℤ)
50 expclzap 10726 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -(𝑀 + 𝑁) ∈ ℤ) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
511, 9, 49, 50syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
5251adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
534adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
54 expap0i 10733 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) # 0)
551, 9, 20, 54syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) # 0)
5655adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) # 0)
5752, 53, 56divcanap4d 8884 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = (𝐴↑-(𝑀 + 𝑁)))
582adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0)
59 expadd 10743 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6043, 46, 58, 59syl3anc 1250 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6115, 35negdi2d 8412 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀𝑁))
6261oveq1d 5971 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = ((-𝑀𝑁) + 𝑁))
6315negcld 8385 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℂ)
6463, 35npcand 8402 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((-𝑀𝑁) + 𝑁) = -𝑀)
6562, 64eqtrd 2239 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6665adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6766oveq2d 5972 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = (𝐴↑-𝑀))
6860, 67eqtr3d 2241 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) = (𝐴↑-𝑀))
6968oveq1d 5971 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7057, 69eqtr3d 2241 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7170oveq2d 5972 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = (1 / ((𝐴↑-𝑀) / (𝐴𝑁))))
728, 4, 12, 55recdivapd 8895 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7372adantr 276 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7471, 73eqtrd 2239 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7548, 74eqtrd 2239 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
76 elznn0 9402 . . . . 5 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
7776simprbi 275 . . . 4 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7821, 77syl 14 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7942, 75, 78mpjaodan 800 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
80 expineg2 10710 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
811, 9, 15, 6, 80syl22anc 1251 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
8281oveq1d 5971 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑀) · (𝐴𝑁)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
8313, 79, 823eqtr4d 2249 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4050  (class class class)co 5956  cc 7938  cr 7939  0cc0 7940  1c1 7941   + caddc 7943   · cmul 7945  cmin 8258  -cneg 8259   # cap 8669   / cdiv 8760  cn 9051  0cn0 9310  cz 9387  cexp 10700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-seqfrec 10610  df-exp 10701
This theorem is referenced by:  expaddzap  10745
  Copyright terms: Public domain W3C validator