| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssblps | GIF version | ||
| Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| ssblps | ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1024 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝐷 ∈ (PsMet‘𝑋)) | |
| 2 | simp1r 1025 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑃 ∈ 𝑋) | |
| 3 | simp2l 1026 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑅 ∈ ℝ*) | |
| 4 | simp2r 1027 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑆 ∈ ℝ*) | |
| 5 | psmet0 14849 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃𝐷𝑃) = 0) | |
| 6 | 5 | 3ad2ant1 1021 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃𝐷𝑃) = 0) |
| 7 | 0re 8085 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | 6, 7 | eqeltrdi 2297 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃𝐷𝑃) ∈ ℝ) |
| 9 | simp3 1002 | . . . 4 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑅 ≤ 𝑆) | |
| 10 | xsubge0 10016 | . . . . 5 ⊢ ((𝑆 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅 ≤ 𝑆)) | |
| 11 | 4, 3, 10 | syl2anc 411 | . . . 4 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅 ≤ 𝑆)) |
| 12 | 9, 11 | mpbird 167 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅)) |
| 13 | 6, 12 | eqbrtrd 4070 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃𝐷𝑃) ≤ (𝑆 +𝑒 -𝑒𝑅)) |
| 14 | 1, 2, 2, 3, 4, 8, 13 | xblss2ps 14926 | 1 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ⊆ wss 3168 class class class wbr 4048 ‘cfv 5277 (class class class)co 5954 ℝcr 7937 0cc0 7938 ℝ*cxr 8119 ≤ cle 8121 -𝑒cxne 9904 +𝑒 cxad 9905 PsMetcpsmet 14347 ballcbl 14350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-map 6747 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-2 9108 df-xneg 9907 df-xadd 9908 df-psmet 14355 df-bl 14358 |
| This theorem is referenced by: blssps 14949 |
| Copyright terms: Public domain | W3C validator |