ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssblps GIF version

Theorem ssblps 13219
Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
ssblps (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))

Proof of Theorem ssblps
StepHypRef Expression
1 simp1l 1016 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝐷 ∈ (PsMet‘𝑋))
2 simp1r 1017 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑃𝑋)
3 simp2l 1018 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑅 ∈ ℝ*)
4 simp2r 1019 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑆 ∈ ℝ*)
5 psmet0 13121 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
653ad2ant1 1013 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃𝐷𝑃) = 0)
7 0re 7920 . . 3 0 ∈ ℝ
86, 7eqeltrdi 2261 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃𝐷𝑃) ∈ ℝ)
9 simp3 994 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑅𝑆)
10 xsubge0 9838 . . . . 5 ((𝑆 ∈ ℝ*𝑅 ∈ ℝ*) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅𝑆))
114, 3, 10syl2anc 409 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅𝑆))
129, 11mpbird 166 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅))
136, 12eqbrtrd 4011 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃𝐷𝑃) ≤ (𝑆 +𝑒 -𝑒𝑅))
141, 2, 2, 3, 4, 8, 13xblss2ps 13198 1 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  *cxr 7953  cle 7955  -𝑒cxne 9726   +𝑒 cxad 9727  PsMetcpsmet 12773  ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-2 8937  df-xneg 9729  df-xadd 9730  df-psmet 12781  df-bl 12784
This theorem is referenced by:  blssps  13221
  Copyright terms: Public domain W3C validator