ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqdi GIF version

Theorem modqdi 10378
Description: Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqdi (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Proof of Theorem modqdi
StepHypRef Expression
1 simp1l 1021 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℚ)
2 qcn 9623 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
31, 2syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℂ)
4 simp2 998 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℚ)
5 qcn 9623 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
64, 5syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
7 simp3l 1025 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℚ)
8 simp3r 1026 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐶)
98gt0ne0d 8459 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
10 qdivcl 9632 . . . . . . . . 9 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℚ)
114, 7, 9, 10syl3anc 1238 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℚ)
1211flqcld 10263 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
13 zq 9615 . . . . . . 7 ((⌊‘(𝐵 / 𝐶)) ∈ ℤ → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
15 qmulcl 9626 . . . . . 6 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐵 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
167, 14, 15syl2anc 411 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
17 qcn 9623 . . . . 5 ((𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
1816, 17syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
193, 6, 18subdid 8361 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))))
20 qcn 9623 . . . . . . . . 9 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
217, 20syl 14 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
22 qre 9614 . . . . . . . . . 10 (𝐶 ∈ ℚ → 𝐶 ∈ ℝ)
237, 22syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
2423, 8gt0ap0d 8576 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 # 0)
25 qre 9614 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
261, 25syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
27 simp1r 1022 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐴)
2826, 27gt0ap0d 8576 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 # 0)
296, 21, 3, 24, 28divcanap5d 8763 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
3029fveq2d 5515 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))) = (⌊‘(𝐵 / 𝐶)))
3130oveq2d 5885 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))))
3212zcnd 9365 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
333, 21, 32mulassd 7971 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))) = (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3431, 33eqtr2d 2211 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))))
3534oveq2d 5885 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
3619, 35eqtrd 2210 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
37 modqval 10310 . . . 4 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
384, 7, 8, 37syl3anc 1238 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3938oveq2d 5885 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
40 qmulcl 9626 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)
411, 4, 40syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · 𝐵) ∈ ℚ)
42 qmulcl 9626 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
431, 7, 42syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · 𝐶) ∈ ℚ)
4426, 23, 27, 8mulgt0d 8070 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < (𝐴 · 𝐶))
45 modqval 10310 . . 3 (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐴 · 𝐶) ∈ ℚ ∧ 0 < (𝐴 · 𝐶)) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4641, 43, 44, 45syl3anc 1238 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4736, 39, 463eqtr4d 2220 1 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802   · cmul 7807   < clt 7982  cmin 8118   / cdiv 8618  cz 9242  cq 9608  cfl 10254   mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator