ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqdi GIF version

Theorem modqdi 10544
Description: Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqdi (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Proof of Theorem modqdi
StepHypRef Expression
1 simp1l 1024 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℚ)
2 qcn 9762 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
31, 2syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℂ)
4 simp2 1001 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℚ)
5 qcn 9762 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
64, 5syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
7 simp3l 1028 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℚ)
8 simp3r 1029 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐶)
98gt0ne0d 8592 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
10 qdivcl 9771 . . . . . . . . 9 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℚ)
114, 7, 9, 10syl3anc 1250 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℚ)
1211flqcld 10427 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
13 zq 9754 . . . . . . 7 ((⌊‘(𝐵 / 𝐶)) ∈ ℤ → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
15 qmulcl 9765 . . . . . 6 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐵 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
167, 14, 15syl2anc 411 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
17 qcn 9762 . . . . 5 ((𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
1816, 17syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
193, 6, 18subdid 8493 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))))
20 qcn 9762 . . . . . . . . 9 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
217, 20syl 14 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
22 qre 9753 . . . . . . . . . 10 (𝐶 ∈ ℚ → 𝐶 ∈ ℝ)
237, 22syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
2423, 8gt0ap0d 8709 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 # 0)
25 qre 9753 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
261, 25syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
27 simp1r 1025 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐴)
2826, 27gt0ap0d 8709 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 # 0)
296, 21, 3, 24, 28divcanap5d 8897 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
3029fveq2d 5587 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))) = (⌊‘(𝐵 / 𝐶)))
3130oveq2d 5967 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))))
3212zcnd 9503 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
333, 21, 32mulassd 8103 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))) = (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3431, 33eqtr2d 2240 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))))
3534oveq2d 5967 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
3619, 35eqtrd 2239 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
37 modqval 10476 . . . 4 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
384, 7, 8, 37syl3anc 1250 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3938oveq2d 5967 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
40 qmulcl 9765 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)
411, 4, 40syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · 𝐵) ∈ ℚ)
42 qmulcl 9765 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
431, 7, 42syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · 𝐶) ∈ ℚ)
4426, 23, 27, 8mulgt0d 8202 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < (𝐴 · 𝐶))
45 modqval 10476 . . 3 (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐴 · 𝐶) ∈ ℚ ∧ 0 < (𝐴 · 𝐶)) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4641, 43, 44, 45syl3anc 1250 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4736, 39, 463eqtr4d 2249 1 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4047  cfv 5276  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932   · cmul 7937   < clt 8114  cmin 8250   / cdiv 8752  cz 9379  cq 9747  cfl 10418   mod cmo 10474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator