ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqdi GIF version

Theorem modqdi 10158
Description: Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqdi (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Proof of Theorem modqdi
StepHypRef Expression
1 simp1l 1005 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℚ)
2 qcn 9419 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
31, 2syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℂ)
4 simp2 982 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℚ)
5 qcn 9419 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
64, 5syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
7 simp3l 1009 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℚ)
8 simp3r 1010 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐶)
98gt0ne0d 8267 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
10 qdivcl 9428 . . . . . . . . 9 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℚ)
114, 7, 9, 10syl3anc 1216 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℚ)
1211flqcld 10043 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
13 zq 9411 . . . . . . 7 ((⌊‘(𝐵 / 𝐶)) ∈ ℤ → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
1412, 13syl 14 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
15 qmulcl 9422 . . . . . 6 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐵 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
167, 14, 15syl2anc 408 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
17 qcn 9419 . . . . 5 ((𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
1816, 17syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
193, 6, 18subdid 8169 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))))
20 qcn 9419 . . . . . . . . 9 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
217, 20syl 14 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
22 qre 9410 . . . . . . . . . 10 (𝐶 ∈ ℚ → 𝐶 ∈ ℝ)
237, 22syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
2423, 8gt0ap0d 8384 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 # 0)
25 qre 9410 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
261, 25syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ)
27 simp1r 1006 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐴)
2826, 27gt0ap0d 8384 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 # 0)
296, 21, 3, 24, 28divcanap5d 8570 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
3029fveq2d 5418 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))) = (⌊‘(𝐵 / 𝐶)))
3130oveq2d 5783 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))))
3212zcnd 9167 . . . . . 6 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
333, 21, 32mulassd 7782 . . . . 5 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))) = (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3431, 33eqtr2d 2171 . . . 4 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))))
3534oveq2d 5783 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
3619, 35eqtrd 2170 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
37 modqval 10090 . . . 4 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
384, 7, 8, 37syl3anc 1216 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3938oveq2d 5783 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
40 qmulcl 9422 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)
411, 4, 40syl2anc 408 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · 𝐵) ∈ ℚ)
42 qmulcl 9422 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
431, 7, 42syl2anc 408 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · 𝐶) ∈ ℚ)
4426, 23, 27, 8mulgt0d 7878 . . 3 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < (𝐴 · 𝐶))
45 modqval 10090 . . 3 (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐴 · 𝐶) ∈ ℚ ∧ 0 < (𝐴 · 𝐶)) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4641, 43, 44, 45syl3anc 1216 . 2 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4736, 39, 463eqtr4d 2180 1 (((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wne 2306   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613   · cmul 7618   < clt 7793  cmin 7926   / cdiv 8425  cz 9047  cq 9404  cfl 10034   mod cmo 10088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator