| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | GIF version | ||
| Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| Ref | Expression |
|---|---|
| basfn | ⊢ Base Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12933 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12902 | 1 ⊢ Base Fn V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2773 Fn wfn 5271 Basecbs 12876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-inn 9044 df-ndx 12879 df-slot 12880 df-base 12882 |
| This theorem is referenced by: basmex 12935 basmexd 12936 ressbas2d 12944 ressbasid 12946 strressid 12947 ressval3d 12948 prdsex 13145 prdsval 13149 prdsbaslemss 13150 prdsbas 13152 prdsplusg 13153 prdsmulr 13154 pwsbas 13168 pwselbasb 13169 pwssnf1o 13174 imasex 13181 imasival 13182 imasbas 13183 imasplusg 13184 imasmulr 13185 imasaddfn 13193 imasaddval 13194 imasaddf 13195 imasmulfn 13196 imasmulval 13197 imasmulf 13198 qusval 13199 qusex 13201 qusaddvallemg 13209 qusaddflemg 13210 qusaddval 13211 qusaddf 13212 qusmulval 13213 qusmulf 13214 xpsval 13228 ismgm 13233 ismgmn0 13234 plusffvalg 13238 grpidvalg 13249 fn0g 13251 gsumress 13271 issgrp 13279 ismnddef 13294 issubmnd 13318 ress0g 13319 ismhm 13337 mhmex 13338 issubm 13348 grppropstrg 13395 grpinvfvalg 13418 grpinvval 13419 grpinvfng 13420 grpsubfvalg 13421 grpsubval 13422 grpressid 13437 grplactfval 13477 qusgrp2 13493 mulgfvalg 13501 mulgval 13502 mulgex 13503 mulgfng 13504 issubg 13553 subgex 13556 issubg2m 13569 isnsg 13582 releqgg 13600 eqgex 13601 eqgfval 13602 eqgen 13607 isghm 13623 ablressid 13715 isrng 13740 rngressid 13760 qusrng 13764 issrg 13771 isring 13806 ringidss 13835 ringressid 13869 qusring2 13872 reldvdsrsrg 13898 dvdsrvald 13899 dvdsrex 13904 unitgrp 13922 unitabl 13923 invrfvald 13928 unitlinv 13932 unitrinv 13933 dvrfvald 13939 rdivmuldivd 13950 invrpropdg 13955 dfrhm2 13960 rhmex 13963 rhmunitinv 13984 isnzr2 13990 issubrng 14005 issubrg 14027 subrgugrp 14046 rrgval 14068 isdomn 14075 aprval 14088 aprap 14092 islmod 14097 scaffvalg 14112 rmodislmod 14157 lssex 14160 lsssetm 14162 islssm 14163 islssmg 14164 islss3 14185 lspfval 14194 lspval 14196 lspcl 14197 lspex 14201 sraval 14243 sralemg 14244 srascag 14248 sravscag 14249 sraipg 14250 sraex 14252 qusrhm 14334 psrval 14472 fnpsr 14473 psrbasg 14480 psrelbas 14481 psrplusgg 14484 psraddcl 14486 psr0cl 14487 psrnegcl 14489 psr1clfi 14494 mplvalcoe 14496 fnmpl 14499 mplplusgg 14509 vtxvalg 15659 vtxex 15661 |
| Copyright terms: Public domain | W3C validator |