| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | GIF version | ||
| Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| Ref | Expression |
|---|---|
| basfn | ⊢ Base Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 13098 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 13066 | 1 ⊢ Base Fn V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 Fn wfn 5313 Basecbs 13040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 |
| This theorem is referenced by: basmex 13100 basmexd 13101 ressbas2d 13109 ressbasid 13111 strressid 13112 ressval3d 13113 prdsex 13310 prdsval 13314 prdsbaslemss 13315 prdsbas 13317 prdsplusg 13318 prdsmulr 13319 pwsbas 13333 pwselbasb 13334 pwssnf1o 13339 imasex 13346 imasival 13347 imasbas 13348 imasplusg 13349 imasmulr 13350 imasaddfn 13358 imasaddval 13359 imasaddf 13360 imasmulfn 13361 imasmulval 13362 imasmulf 13363 qusval 13364 qusex 13366 qusaddvallemg 13374 qusaddflemg 13375 qusaddval 13376 qusaddf 13377 qusmulval 13378 qusmulf 13379 xpsval 13393 ismgm 13398 ismgmn0 13399 plusffvalg 13403 grpidvalg 13414 fn0g 13416 gsumress 13436 issgrp 13444 ismnddef 13459 issubmnd 13483 ress0g 13484 ismhm 13502 mhmex 13503 issubm 13513 grppropstrg 13560 grpinvfvalg 13583 grpinvval 13584 grpinvfng 13585 grpsubfvalg 13586 grpsubval 13587 grpressid 13602 grplactfval 13642 qusgrp2 13658 mulgfvalg 13666 mulgval 13667 mulgex 13668 mulgfng 13669 issubg 13718 subgex 13721 issubg2m 13734 isnsg 13747 releqgg 13765 eqgex 13766 eqgfval 13767 eqgen 13772 isghm 13788 ablressid 13880 isrng 13905 rngressid 13925 qusrng 13929 issrg 13936 isring 13971 ringidss 14000 ringressid 14034 qusring2 14037 dvdsrvald 14065 dvdsrex 14070 unitgrp 14088 unitabl 14089 invrfvald 14094 unitlinv 14098 unitrinv 14099 dvrfvald 14105 rdivmuldivd 14116 invrpropdg 14121 dfrhm2 14126 rhmex 14129 rhmunitinv 14150 isnzr2 14156 issubrng 14171 issubrg 14193 subrgugrp 14212 rrgval 14234 isdomn 14241 aprval 14254 aprap 14258 islmod 14263 scaffvalg 14278 rmodislmod 14323 lssex 14326 lsssetm 14328 islssm 14329 islssmg 14330 islss3 14351 lspfval 14360 lspval 14362 lspcl 14363 lspex 14367 sraval 14409 sralemg 14410 srascag 14414 sravscag 14415 sraipg 14416 sraex 14418 qusrhm 14500 psrval 14638 fnpsr 14639 psrbasg 14646 psrelbas 14647 psrplusgg 14650 psraddcl 14652 psr0cl 14653 psrnegcl 14655 psr1clfi 14660 mplvalcoe 14662 fnmpl 14665 mplplusgg 14675 vtxvalg 15825 vtxex 15827 |
| Copyright terms: Public domain | W3C validator |