![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > basfn | GIF version |
Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
Ref | Expression |
---|---|
basfn | ⊢ Base Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12675 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
2 | 1 | slotslfn 12644 | 1 ⊢ Base Fn V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 Fn wfn 5249 Basecbs 12618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-inn 8983 df-ndx 12621 df-slot 12622 df-base 12624 |
This theorem is referenced by: basmex 12677 basmexd 12678 ressbas2d 12686 ressbasid 12688 strressid 12689 ressval3d 12690 prdsex 12880 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfn 12900 imasaddval 12901 imasaddf 12902 imasmulfn 12903 imasmulval 12904 imasmulf 12905 qusval 12906 qusex 12908 qusaddvallemg 12916 qusaddflemg 12917 qusaddval 12918 qusaddf 12919 qusmulval 12920 qusmulf 12921 xpsval 12935 ismgm 12940 ismgmn0 12941 plusffvalg 12945 grpidvalg 12956 fn0g 12958 gsumress 12978 issgrp 12986 ismnddef 12999 issubmnd 13023 ress0g 13024 ismhm 13033 mhmex 13034 issubm 13044 grppropstrg 13091 grpinvfvalg 13114 grpinvval 13115 grpinvfng 13116 grpsubfvalg 13117 grpsubval 13118 grpressid 13133 grplactfval 13173 qusgrp2 13183 mulgfvalg 13191 mulgval 13192 mulgex 13193 mulgfng 13194 issubg 13243 subgex 13246 issubg2m 13259 isnsg 13272 releqgg 13290 eqgex 13291 eqgfval 13292 eqgen 13297 isghm 13313 ablressid 13405 isrng 13430 rngressid 13450 qusrng 13454 issrg 13461 isring 13496 ringidss 13525 ringressid 13559 qusring2 13562 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrex 13594 unitgrp 13612 unitabl 13613 invrfvald 13618 unitlinv 13622 unitrinv 13623 dvrfvald 13629 rdivmuldivd 13640 invrpropdg 13645 dfrhm2 13650 rhmex 13653 rhmunitinv 13674 isnzr2 13680 issubrng 13695 issubrg 13717 subrgugrp 13736 rrgval 13758 isdomn 13765 aprval 13778 aprap 13782 islmod 13787 scaffvalg 13802 rmodislmod 13847 lssex 13850 lsssetm 13852 islssm 13853 islssmg 13854 islss3 13875 lspfval 13884 lspval 13886 lspcl 13887 lspex 13891 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 qusrhm 14024 psrval 14152 fnpsr 14153 psrbasg 14159 psrelbas 14160 psrplusgg 14162 psraddcl 14164 |
Copyright terms: Public domain | W3C validator |