| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | GIF version | ||
| Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| Ref | Expression |
|---|---|
| basfn | ⊢ Base Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12762 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12731 | 1 ⊢ Base Fn V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2763 Fn wfn 5254 Basecbs 12705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-inn 9010 df-ndx 12708 df-slot 12709 df-base 12711 |
| This theorem is referenced by: basmex 12764 basmexd 12765 ressbas2d 12773 ressbasid 12775 strressid 12776 ressval3d 12777 prdsex 12973 prdsval 12977 prdsbaslemss 12978 prdsbas 12980 prdsplusg 12981 prdsmulr 12982 pwsbas 12996 pwselbasb 12997 pwssnf1o 13002 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfn 13021 imasaddval 13022 imasaddf 13023 imasmulfn 13024 imasmulval 13025 imasmulf 13026 qusval 13027 qusex 13029 qusaddvallemg 13037 qusaddflemg 13038 qusaddval 13039 qusaddf 13040 qusmulval 13041 qusmulf 13042 xpsval 13056 ismgm 13061 ismgmn0 13062 plusffvalg 13066 grpidvalg 13077 fn0g 13079 gsumress 13099 issgrp 13107 ismnddef 13122 issubmnd 13146 ress0g 13147 ismhm 13165 mhmex 13166 issubm 13176 grppropstrg 13223 grpinvfvalg 13246 grpinvval 13247 grpinvfng 13248 grpsubfvalg 13249 grpsubval 13250 grpressid 13265 grplactfval 13305 qusgrp2 13321 mulgfvalg 13329 mulgval 13330 mulgex 13331 mulgfng 13332 issubg 13381 subgex 13384 issubg2m 13397 isnsg 13410 releqgg 13428 eqgex 13429 eqgfval 13430 eqgen 13435 isghm 13451 ablressid 13543 isrng 13568 rngressid 13588 qusrng 13592 issrg 13599 isring 13634 ringidss 13663 ringressid 13697 qusring2 13700 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrex 13732 unitgrp 13750 unitabl 13751 invrfvald 13756 unitlinv 13760 unitrinv 13761 dvrfvald 13767 rdivmuldivd 13778 invrpropdg 13783 dfrhm2 13788 rhmex 13791 rhmunitinv 13812 isnzr2 13818 issubrng 13833 issubrg 13855 subrgugrp 13874 rrgval 13896 isdomn 13903 aprval 13916 aprap 13920 islmod 13925 scaffvalg 13940 rmodislmod 13985 lssex 13988 lsssetm 13990 islssm 13991 islssmg 13992 islss3 14013 lspfval 14022 lspval 14024 lspcl 14025 lspex 14029 sraval 14071 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 qusrhm 14162 psrval 14298 fnpsr 14299 psrbasg 14305 psrelbas 14306 psrplusgg 14308 psraddcl 14310 psr0cl 14311 psrnegcl 14313 psr1clfi 14318 |
| Copyright terms: Public domain | W3C validator |