ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basfn GIF version

Theorem basfn 12473
Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Assertion
Ref Expression
basfn Base Fn V

Proof of Theorem basfn
StepHypRef Expression
1 baseslid 12472 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
21slotslfn 12442 1 Base Fn V
Colors of variables: wff set class
Syntax hints:  Vcvv 2730   Fn wfn 5193  Basecbs 12416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422
This theorem is referenced by:  basmex  12474  basmexd  12475  ismgm  12611  ismgmn0  12612  plusffvalg  12616  grpidvalg  12627  fn0g  12629  issgrp  12644  ismnddef  12654  ismhm  12685  issubm  12695  grpinvfvalg  12745  grpinvval  12746  grpinvfng  12747  grpsubfvalg  12748  grpsubval  12749
  Copyright terms: Public domain W3C validator