| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basfn | GIF version | ||
| Description: The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| Ref | Expression |
|---|---|
| basfn | ⊢ Base Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12760 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12729 | 1 ⊢ Base Fn V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2763 Fn wfn 5254 Basecbs 12703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 |
| This theorem is referenced by: basmex 12762 basmexd 12763 ressbas2d 12771 ressbasid 12773 strressid 12774 ressval3d 12775 prdsex 12971 prdsval 12975 prdsbaslemss 12976 prdsbas 12978 prdsplusg 12979 prdsmulr 12980 pwsbas 12994 pwselbasb 12995 pwssnf1o 13000 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfn 13019 imasaddval 13020 imasaddf 13021 imasmulfn 13022 imasmulval 13023 imasmulf 13024 qusval 13025 qusex 13027 qusaddvallemg 13035 qusaddflemg 13036 qusaddval 13037 qusaddf 13038 qusmulval 13039 qusmulf 13040 xpsval 13054 ismgm 13059 ismgmn0 13060 plusffvalg 13064 grpidvalg 13075 fn0g 13077 gsumress 13097 issgrp 13105 ismnddef 13120 issubmnd 13144 ress0g 13145 ismhm 13163 mhmex 13164 issubm 13174 grppropstrg 13221 grpinvfvalg 13244 grpinvval 13245 grpinvfng 13246 grpsubfvalg 13247 grpsubval 13248 grpressid 13263 grplactfval 13303 qusgrp2 13319 mulgfvalg 13327 mulgval 13328 mulgex 13329 mulgfng 13330 issubg 13379 subgex 13382 issubg2m 13395 isnsg 13408 releqgg 13426 eqgex 13427 eqgfval 13428 eqgen 13433 isghm 13449 ablressid 13541 isrng 13566 rngressid 13586 qusrng 13590 issrg 13597 isring 13632 ringidss 13661 ringressid 13695 qusring2 13698 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrex 13730 unitgrp 13748 unitabl 13749 invrfvald 13754 unitlinv 13758 unitrinv 13759 dvrfvald 13765 rdivmuldivd 13776 invrpropdg 13781 dfrhm2 13786 rhmex 13789 rhmunitinv 13810 isnzr2 13816 issubrng 13831 issubrg 13853 subrgugrp 13872 rrgval 13894 isdomn 13901 aprval 13914 aprap 13918 islmod 13923 scaffvalg 13938 rmodislmod 13983 lssex 13986 lsssetm 13988 islssm 13989 islssmg 13990 islss3 14011 lspfval 14020 lspval 14022 lspcl 14023 lspex 14027 sraval 14069 sralemg 14070 srascag 14074 sravscag 14075 sraipg 14076 sraex 14078 qusrhm 14160 psrval 14296 fnpsr 14297 psrbasg 14303 psrelbas 14304 psrplusgg 14306 psraddcl 14308 psr0cl 14309 psrnegcl 14311 psr1clfi 14316 |
| Copyright terms: Public domain | W3C validator |