| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotex | GIF version | ||
| Description: Existence of slot value. A corollary of slotslfn 12714. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12714 | . 2 ⊢ 𝐸 Fn V |
| 3 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | funfvex 5576 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
| 5 | 4 | funfni 5359 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 Fn wfn 5254 ‘cfv 5259 ℕcn 8992 ndxcnx 12685 Slot cslot 12687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-slot 12692 |
| This theorem is referenced by: topnfn 12925 topnvalg 12932 topnidg 12933 imasex 12958 imasival 12959 imasbas 12960 imasplusg 12961 imasmulr 12962 imasaddfn 12970 imasaddval 12971 imasaddf 12972 imasmulfn 12973 imasmulval 12974 imasmulf 12975 qusaddval 12988 qusaddf 12989 qusmulval 12990 qusmulf 12991 xpsval 13005 ismgm 13010 plusfvalg 13016 plusffng 13018 gsumpropd2 13046 gsumsplit1r 13051 gsumprval 13052 issgrp 13056 ismnddef 13069 gsumfzz 13137 gsumwsubmcl 13138 gsumwmhm 13140 gsumfzcl 13141 grppropstrg 13161 grpsubval 13188 mulgval 13262 mulgfng 13264 mulgnngsum 13267 mulg1 13269 mulgnnp1 13270 mulgnndir 13291 subgintm 13338 isnsg 13342 gsumfzreidx 13477 gsumfzsubmcl 13478 gsumfzmptfidmadd 13479 gsumfzconst 13481 gsumfzmhm 13483 fnmgp 13488 mgpvalg 13489 mgpplusgg 13490 mgpex 13491 mgpbasg 13492 mgpscag 13493 mgptsetg 13494 mgpdsg 13496 mgpress 13497 isrng 13500 issrg 13531 isring 13566 opprvalg 13635 opprmulfvalg 13636 opprex 13639 opprsllem 13640 subrngintm 13778 islmod 13857 scaffvalg 13872 scafvalg 13873 scaffng 13875 rmodislmodlem 13916 rmodislmod 13917 lsssn0 13936 lss1d 13949 lssintclm 13950 ellspsn 13983 sraval 14003 sralemg 14004 srascag 14008 sravscag 14009 sraipg 14010 sraex 14012 crngridl 14096 znbaslemnn 14205 |
| Copyright terms: Public domain | W3C validator |