| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotex | GIF version | ||
| Description: Existence of slot value. A corollary of slotslfn 12729. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12729 | . 2 ⊢ 𝐸 Fn V |
| 3 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | funfvex 5578 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
| 5 | 4 | funfni 5361 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 Fn wfn 5254 ‘cfv 5259 ℕcn 9007 ndxcnx 12700 Slot cslot 12702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-slot 12707 |
| This theorem is referenced by: topnfn 12946 topnvalg 12953 topnidg 12954 prdsplusgfval 12986 prdsmulrfval 12988 pwsval 12993 pwsbas 12994 pwsplusgval 12997 pwsmulrval 12998 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfn 13019 imasaddval 13020 imasaddf 13021 imasmulfn 13022 imasmulval 13023 imasmulf 13024 qusaddval 13037 qusaddf 13038 qusmulval 13039 qusmulf 13040 xpsval 13054 ismgm 13059 plusfvalg 13065 plusffng 13067 gsumpropd2 13095 gsumsplit1r 13100 gsumprval 13101 issgrp 13105 ismnddef 13120 pwsmnd 13152 pws0g 13153 gsumfzz 13197 gsumwsubmcl 13198 gsumwmhm 13200 gsumfzcl 13201 grppropstrg 13221 grpsubval 13248 pwsgrp 13313 pwsinvg 13314 mulgval 13328 mulgfng 13330 mulgnngsum 13333 mulg1 13335 mulgnnp1 13336 mulgnndir 13357 subgintm 13404 isnsg 13408 gsumfzreidx 13543 gsumfzsubmcl 13544 gsumfzmptfidmadd 13545 gsumfzconst 13547 gsumfzmhm 13549 fnmgp 13554 mgpvalg 13555 mgpplusgg 13556 mgpex 13557 mgpbasg 13558 mgpscag 13559 mgptsetg 13560 mgpdsg 13562 mgpress 13563 isrng 13566 issrg 13597 isring 13632 opprvalg 13701 opprmulfvalg 13702 opprex 13705 opprsllem 13706 subrngintm 13844 islmod 13923 scaffvalg 13938 scafvalg 13939 scaffng 13941 rmodislmodlem 13982 rmodislmod 13983 lsssn0 14002 lss1d 14015 lssintclm 14016 ellspsn 14049 sraval 14069 sralemg 14070 srascag 14074 sravscag 14075 sraipg 14076 sraex 14078 crngridl 14162 znbaslemnn 14271 |
| Copyright terms: Public domain | W3C validator |