![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotex | GIF version |
Description: Existence of slot value. A corollary of slotslfn 12490. (Contributed by Jim Kingdon, 12-Feb-2023.) |
Ref | Expression |
---|---|
slotslfn.e | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
Ref | Expression |
---|---|
slotex | β’ (π΄ β π β (πΈβπ΄) β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slotslfn.e | . . 3 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
2 | 1 | slotslfn 12490 | . 2 β’ πΈ Fn V |
3 | elex 2750 | . 2 β’ (π΄ β π β π΄ β V) | |
4 | funfvex 5534 | . . 3 β’ ((Fun πΈ β§ π΄ β dom πΈ) β (πΈβπ΄) β V) | |
5 | 4 | funfni 5318 | . 2 β’ ((πΈ Fn V β§ π΄ β V) β (πΈβπ΄) β V) |
6 | 2, 3, 5 | sylancr 414 | 1 β’ (π΄ β π β (πΈβπ΄) β V) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 Vcvv 2739 Fn wfn 5213 βcfv 5218 βcn 8921 ndxcnx 12461 Slot cslot 12463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-slot 12468 |
This theorem is referenced by: topnfn 12698 topnvalg 12705 topnidg 12706 imasex 12731 imasival 12732 imasbas 12733 imasplusg 12734 imasmulr 12735 imasaddfn 12743 imasaddval 12744 imasaddf 12745 imasmulfn 12746 imasmulval 12747 imasmulf 12748 qusaddval 12759 qusaddf 12760 qusmulval 12761 qusmulf 12762 xpsval 12776 ismgm 12781 plusfvalg 12787 plusffng 12789 issgrp 12814 ismnddef 12824 grppropstrg 12900 grpsubval 12924 mulgval 12991 mulgfng 12992 mulg1 12995 mulgnnp1 12996 mulgnndir 13017 subgintm 13063 isnsg 13067 fnmgp 13137 mgpvalg 13138 mgpplusgg 13139 mgpex 13140 mgpbasg 13141 mgpscag 13142 mgptsetg 13143 mgpdsg 13145 mgpress 13146 issrg 13153 isring 13188 opprvalg 13246 opprmulfvalg 13247 opprex 13250 opprsllem 13251 islmod 13386 scaffvalg 13401 scafvalg 13402 scaffng 13404 rmodislmodlem 13445 rmodislmod 13446 lsssn0 13461 lss1d 13475 lssintclm 13476 |
Copyright terms: Public domain | W3C validator |