![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotex | GIF version |
Description: Existence of slot value. A corollary of slotslfn 12644. (Contributed by Jim Kingdon, 12-Feb-2023.) |
Ref | Expression |
---|---|
slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Ref | Expression |
---|---|
slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | 1 | slotslfn 12644 | . 2 ⊢ 𝐸 Fn V |
3 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | funfvex 5571 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
5 | 4 | funfni 5354 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
6 | 2, 3, 5 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5249 ‘cfv 5254 ℕcn 8982 ndxcnx 12615 Slot cslot 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-slot 12622 |
This theorem is referenced by: topnfn 12855 topnvalg 12862 topnidg 12863 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfn 12900 imasaddval 12901 imasaddf 12902 imasmulfn 12903 imasmulval 12904 imasmulf 12905 qusaddval 12918 qusaddf 12919 qusmulval 12920 qusmulf 12921 xpsval 12935 ismgm 12940 plusfvalg 12946 plusffng 12948 gsumpropd2 12976 gsumsplit1r 12981 gsumprval 12982 issgrp 12986 ismnddef 12999 gsumfzz 13067 gsumwsubmcl 13068 gsumwmhm 13070 gsumfzcl 13071 grppropstrg 13091 grpsubval 13118 mulgval 13192 mulgfng 13194 mulgnngsum 13197 mulg1 13199 mulgnnp1 13200 mulgnndir 13221 subgintm 13268 isnsg 13272 gsumfzreidx 13407 gsumfzsubmcl 13408 gsumfzmptfidmadd 13409 gsumfzconst 13411 gsumfzmhm 13413 fnmgp 13418 mgpvalg 13419 mgpplusgg 13420 mgpex 13421 mgpbasg 13422 mgpscag 13423 mgptsetg 13424 mgpdsg 13426 mgpress 13427 isrng 13430 issrg 13461 isring 13496 opprvalg 13565 opprmulfvalg 13566 opprex 13569 opprsllem 13570 subrngintm 13708 islmod 13787 scaffvalg 13802 scafvalg 13803 scaffng 13805 rmodislmodlem 13846 rmodislmod 13847 lsssn0 13866 lss1d 13879 lssintclm 13880 ellspsn 13913 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 crngridl 14026 znbaslemnn 14127 |
Copyright terms: Public domain | W3C validator |