![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotex | GIF version |
Description: Existence of slot value. A corollary of slotslfn 12647. (Contributed by Jim Kingdon, 12-Feb-2023.) |
Ref | Expression |
---|---|
slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Ref | Expression |
---|---|
slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | 1 | slotslfn 12647 | . 2 ⊢ 𝐸 Fn V |
3 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | funfvex 5572 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
5 | 4 | funfni 5355 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
6 | 2, 3, 5 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5250 ‘cfv 5255 ℕcn 8984 ndxcnx 12618 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-slot 12625 |
This theorem is referenced by: topnfn 12858 topnvalg 12865 topnidg 12866 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfn 12903 imasaddval 12904 imasaddf 12905 imasmulfn 12906 imasmulval 12907 imasmulf 12908 qusaddval 12921 qusaddf 12922 qusmulval 12923 qusmulf 12924 xpsval 12938 ismgm 12943 plusfvalg 12949 plusffng 12951 gsumpropd2 12979 gsumsplit1r 12984 gsumprval 12985 issgrp 12989 ismnddef 13002 gsumfzz 13070 gsumwsubmcl 13071 gsumwmhm 13073 gsumfzcl 13074 grppropstrg 13094 grpsubval 13121 mulgval 13195 mulgfng 13197 mulgnngsum 13200 mulg1 13202 mulgnnp1 13203 mulgnndir 13224 subgintm 13271 isnsg 13275 gsumfzreidx 13410 gsumfzsubmcl 13411 gsumfzmptfidmadd 13412 gsumfzconst 13414 gsumfzmhm 13416 fnmgp 13421 mgpvalg 13422 mgpplusgg 13423 mgpex 13424 mgpbasg 13425 mgpscag 13426 mgptsetg 13427 mgpdsg 13429 mgpress 13430 isrng 13433 issrg 13464 isring 13499 opprvalg 13568 opprmulfvalg 13569 opprex 13572 opprsllem 13573 subrngintm 13711 islmod 13790 scaffvalg 13805 scafvalg 13806 scaffng 13808 rmodislmodlem 13849 rmodislmod 13850 lsssn0 13869 lss1d 13882 lssintclm 13883 ellspsn 13916 sraval 13936 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 crngridl 14029 znbaslemnn 14138 |
Copyright terms: Public domain | W3C validator |