Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > slotex | GIF version |
Description: Existence of slot value. A corollary of slotslfn 12420. (Contributed by Jim Kingdon, 12-Feb-2023.) |
Ref | Expression |
---|---|
slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Ref | Expression |
---|---|
slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | 1 | slotslfn 12420 | . 2 ⊢ 𝐸 Fn V |
3 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | funfvex 5503 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
5 | 4 | funfni 5288 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
6 | 2, 3, 5 | sylancr 411 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 Fn wfn 5183 ‘cfv 5188 ℕcn 8857 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-slot 12398 |
This theorem is referenced by: topnfn 12561 topnvalg 12568 topnidg 12569 ismgm 12588 plusfvalg 12594 plusffng 12596 |
Copyright terms: Public domain | W3C validator |