| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotex | GIF version | ||
| Description: Existence of slot value. A corollary of slotslfn 12891. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12891 | . 2 ⊢ 𝐸 Fn V |
| 3 | elex 2783 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | funfvex 5595 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
| 5 | 4 | funfni 5377 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 Fn wfn 5267 ‘cfv 5272 ℕcn 9038 ndxcnx 12862 Slot cslot 12864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-slot 12869 |
| This theorem is referenced by: topnfn 13109 topnvalg 13116 topnidg 13117 prdsplusgfval 13149 prdsmulrfval 13151 pwsval 13156 pwsbas 13157 pwsplusgval 13160 pwsmulrval 13161 imasex 13170 imasival 13171 imasbas 13172 imasplusg 13173 imasmulr 13174 imasaddfn 13182 imasaddval 13183 imasaddf 13184 imasmulfn 13185 imasmulval 13186 imasmulf 13187 qusaddval 13200 qusaddf 13201 qusmulval 13202 qusmulf 13203 xpsval 13217 ismgm 13222 plusfvalg 13228 plusffng 13230 gsumpropd2 13258 gsumsplit1r 13263 gsumprval 13264 issgrp 13268 ismnddef 13283 pwsmnd 13315 pws0g 13316 gsumfzz 13360 gsumwsubmcl 13361 gsumwmhm 13363 gsumfzcl 13364 grppropstrg 13384 grpsubval 13411 pwsgrp 13476 pwsinvg 13477 mulgval 13491 mulgfng 13493 mulgnngsum 13496 mulg1 13498 mulgnnp1 13499 mulgnndir 13520 subgintm 13567 isnsg 13571 gsumfzreidx 13706 gsumfzsubmcl 13707 gsumfzmptfidmadd 13708 gsumfzconst 13710 gsumfzmhm 13712 fnmgp 13717 mgpvalg 13718 mgpplusgg 13719 mgpex 13720 mgpbasg 13721 mgpscag 13722 mgptsetg 13723 mgpdsg 13725 mgpress 13726 isrng 13729 issrg 13760 isring 13795 opprvalg 13864 opprmulfvalg 13865 opprex 13868 opprsllem 13869 subrngintm 14007 islmod 14086 scaffvalg 14101 scafvalg 14102 scaffng 14104 rmodislmodlem 14145 rmodislmod 14146 lsssn0 14165 lss1d 14178 lssintclm 14179 ellspsn 14212 sraval 14232 sralemg 14233 srascag 14237 sravscag 14238 sraipg 14239 sraex 14241 crngridl 14325 znbaslemnn 14434 iedgvalg 15649 edgvalg 15687 edgstruct 15691 |
| Copyright terms: Public domain | W3C validator |