| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotex | GIF version | ||
| Description: Existence of slot value. A corollary of slotslfn 12731. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| Ref | Expression |
|---|---|
| slotslfn.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Ref | Expression |
|---|---|
| slotex | ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotslfn.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | 1 | slotslfn 12731 | . 2 ⊢ 𝐸 Fn V |
| 3 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | funfvex 5578 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐴 ∈ dom 𝐸) → (𝐸‘𝐴) ∈ V) | |
| 5 | 4 | funfni 5361 | . 2 ⊢ ((𝐸 Fn V ∧ 𝐴 ∈ V) → (𝐸‘𝐴) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 Fn wfn 5254 ‘cfv 5259 ℕcn 9009 ndxcnx 12702 Slot cslot 12704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-slot 12709 |
| This theorem is referenced by: topnfn 12948 topnvalg 12955 topnidg 12956 prdsplusgfval 12988 prdsmulrfval 12990 pwsval 12995 pwsbas 12996 pwsplusgval 12999 pwsmulrval 13000 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfn 13021 imasaddval 13022 imasaddf 13023 imasmulfn 13024 imasmulval 13025 imasmulf 13026 qusaddval 13039 qusaddf 13040 qusmulval 13041 qusmulf 13042 xpsval 13056 ismgm 13061 plusfvalg 13067 plusffng 13069 gsumpropd2 13097 gsumsplit1r 13102 gsumprval 13103 issgrp 13107 ismnddef 13122 pwsmnd 13154 pws0g 13155 gsumfzz 13199 gsumwsubmcl 13200 gsumwmhm 13202 gsumfzcl 13203 grppropstrg 13223 grpsubval 13250 pwsgrp 13315 pwsinvg 13316 mulgval 13330 mulgfng 13332 mulgnngsum 13335 mulg1 13337 mulgnnp1 13338 mulgnndir 13359 subgintm 13406 isnsg 13410 gsumfzreidx 13545 gsumfzsubmcl 13546 gsumfzmptfidmadd 13547 gsumfzconst 13549 gsumfzmhm 13551 fnmgp 13556 mgpvalg 13557 mgpplusgg 13558 mgpex 13559 mgpbasg 13560 mgpscag 13561 mgptsetg 13562 mgpdsg 13564 mgpress 13565 isrng 13568 issrg 13599 isring 13634 opprvalg 13703 opprmulfvalg 13704 opprex 13707 opprsllem 13708 subrngintm 13846 islmod 13925 scaffvalg 13940 scafvalg 13941 scaffng 13943 rmodislmodlem 13984 rmodislmod 13985 lsssn0 14004 lss1d 14017 lssintclm 14018 ellspsn 14051 sraval 14071 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 crngridl 14164 znbaslemnn 14273 |
| Copyright terms: Public domain | W3C validator |