ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemloc GIF version

Theorem cauappcvgprlemloc 7593
Description: Lemma for cauappcvgpr 7603. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemloc (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemloc
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7350 . . . . 5 (𝑠 <Q 𝑟 → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
21adantl 275 . . . 4 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑟)
3 subhalfnqq 7355 . . . . . 6 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
43ad2antrl 482 . . . . 5 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
5 simprr 522 . . . . . . . . 9 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑥 +Q 𝑥) <Q 𝑦)
6 simplrl 525 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑠Q)
76adantr 274 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → 𝑠Q)
87adantr 274 . . . . . . . . 9 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑠Q)
9 ltanqi 7343 . . . . . . . . 9 (((𝑥 +Q 𝑥) <Q 𝑦𝑠Q) → (𝑠 +Q (𝑥 +Q 𝑥)) <Q (𝑠 +Q 𝑦))
105, 8, 9syl2anc 409 . . . . . . . 8 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 +Q (𝑥 +Q 𝑥)) <Q (𝑠 +Q 𝑦))
11 simplrr 526 . . . . . . . 8 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 +Q 𝑦) = 𝑟)
1210, 11breqtrd 4008 . . . . . . 7 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 +Q (𝑥 +Q 𝑥)) <Q 𝑟)
13 simprl 521 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑥Q)
14 addclnq 7316 . . . . . . . . . 10 ((𝑥Q𝑥Q) → (𝑥 +Q 𝑥) ∈ Q)
1513, 13, 14syl2anc 409 . . . . . . . . 9 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑥 +Q 𝑥) ∈ Q)
16 addclnq 7316 . . . . . . . . 9 ((𝑠Q ∧ (𝑥 +Q 𝑥) ∈ Q) → (𝑠 +Q (𝑥 +Q 𝑥)) ∈ Q)
178, 15, 16syl2anc 409 . . . . . . . 8 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 +Q (𝑥 +Q 𝑥)) ∈ Q)
18 simplrr 526 . . . . . . . . . 10 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → 𝑟Q)
1918adantr 274 . . . . . . . . 9 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → 𝑟Q)
2019adantr 274 . . . . . . . 8 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑟Q)
21 cauappcvgpr.f . . . . . . . . . . 11 (𝜑𝐹:QQ)
2221ad4antr 486 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝐹:QQ)
2322, 13ffvelrnd 5621 . . . . . . . . 9 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝐹𝑥) ∈ Q)
24 addclnq 7316 . . . . . . . . 9 (((𝐹𝑥) ∈ Q𝑥Q) → ((𝐹𝑥) +Q 𝑥) ∈ Q)
2523, 13, 24syl2anc 409 . . . . . . . 8 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ((𝐹𝑥) +Q 𝑥) ∈ Q)
26 ltsonq 7339 . . . . . . . . 9 <Q Or Q
27 sowlin 4298 . . . . . . . . 9 (( <Q Or Q ∧ ((𝑠 +Q (𝑥 +Q 𝑥)) ∈ Q𝑟Q ∧ ((𝐹𝑥) +Q 𝑥) ∈ Q)) → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q 𝑟 → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥) ∨ ((𝐹𝑥) +Q 𝑥) <Q 𝑟)))
2826, 27mpan 421 . . . . . . . 8 (((𝑠 +Q (𝑥 +Q 𝑥)) ∈ Q𝑟Q ∧ ((𝐹𝑥) +Q 𝑥) ∈ Q) → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q 𝑟 → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥) ∨ ((𝐹𝑥) +Q 𝑥) <Q 𝑟)))
2917, 20, 25, 28syl3anc 1228 . . . . . . 7 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q 𝑟 → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥) ∨ ((𝐹𝑥) +Q 𝑥) <Q 𝑟)))
3012, 29mpd 13 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥) ∨ ((𝐹𝑥) +Q 𝑥) <Q 𝑟))
318adantr 274 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → 𝑠Q)
32 simplrl 525 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → 𝑥Q)
33 simpr 109 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥))
34 addassnqg 7323 . . . . . . . . . . . . . 14 ((𝑠Q𝑥Q𝑥Q) → ((𝑠 +Q 𝑥) +Q 𝑥) = (𝑠 +Q (𝑥 +Q 𝑥)))
3531, 32, 32, 34syl3anc 1228 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → ((𝑠 +Q 𝑥) +Q 𝑥) = (𝑠 +Q (𝑥 +Q 𝑥)))
3635breq1d 3992 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → (((𝑠 +Q 𝑥) +Q 𝑥) <Q ((𝐹𝑥) +Q 𝑥) ↔ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)))
3733, 36mpbird 166 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → ((𝑠 +Q 𝑥) +Q 𝑥) <Q ((𝐹𝑥) +Q 𝑥))
38 ltanqg 7341 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3938adantl 275 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
40 addclnq 7316 . . . . . . . . . . . . 13 ((𝑠Q𝑥Q) → (𝑠 +Q 𝑥) ∈ Q)
4131, 32, 40syl2anc 409 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → (𝑠 +Q 𝑥) ∈ Q)
4223adantr 274 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → (𝐹𝑥) ∈ Q)
43 addcomnqg 7322 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4443adantl 275 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4539, 41, 42, 32, 44caovord2d 6011 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → ((𝑠 +Q 𝑥) <Q (𝐹𝑥) ↔ ((𝑠 +Q 𝑥) +Q 𝑥) <Q ((𝐹𝑥) +Q 𝑥)))
4637, 45mpbird 166 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → (𝑠 +Q 𝑥) <Q (𝐹𝑥))
47 oveq2 5850 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑥))
48 fveq2 5486 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (𝐹𝑞) = (𝐹𝑥))
4947, 48breq12d 3995 . . . . . . . . . . 11 (𝑞 = 𝑥 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑥) <Q (𝐹𝑥)))
5049rspcev 2830 . . . . . . . . . 10 ((𝑥Q ∧ (𝑠 +Q 𝑥) <Q (𝐹𝑥)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
5132, 46, 50syl2anc 409 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
52 oveq1 5849 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
5352breq1d 3992 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
5453rexbidv 2467 . . . . . . . . . 10 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
55 cauappcvgpr.lim . . . . . . . . . . . 12 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
5655fveq2i 5489 . . . . . . . . . . 11 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
57 nqex 7304 . . . . . . . . . . . . 13 Q ∈ V
5857rabex 4126 . . . . . . . . . . . 12 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
5957rabex 4126 . . . . . . . . . . . 12 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
6058, 59op1st 6114 . . . . . . . . . . 11 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
6156, 60eqtri 2186 . . . . . . . . . 10 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
6254, 61elrab2 2885 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
6331, 51, 62sylanbrc 414 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥)) → 𝑠 ∈ (1st𝐿))
6463ex 114 . . . . . . 7 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ((𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥) → 𝑠 ∈ (1st𝐿)))
6520adantr 274 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ ((𝐹𝑥) +Q 𝑥) <Q 𝑟) → 𝑟Q)
66 id 19 . . . . . . . . . . . . 13 (𝑞 = 𝑥𝑞 = 𝑥)
6748, 66oveq12d 5860 . . . . . . . . . . . 12 (𝑞 = 𝑥 → ((𝐹𝑞) +Q 𝑞) = ((𝐹𝑥) +Q 𝑥))
6867breq1d 3992 . . . . . . . . . . 11 (𝑞 = 𝑥 → (((𝐹𝑞) +Q 𝑞) <Q 𝑟 ↔ ((𝐹𝑥) +Q 𝑥) <Q 𝑟))
6968rspcev 2830 . . . . . . . . . 10 ((𝑥Q ∧ ((𝐹𝑥) +Q 𝑥) <Q 𝑟) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
7013, 69sylan 281 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ ((𝐹𝑥) +Q 𝑥) <Q 𝑟) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
71 breq2 3986 . . . . . . . . . . 11 (𝑢 = 𝑟 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
7271rexbidv 2467 . . . . . . . . . 10 (𝑢 = 𝑟 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
7355fveq2i 5489 . . . . . . . . . . 11 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
7458, 59op2nd 6115 . . . . . . . . . . 11 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
7573, 74eqtri 2186 . . . . . . . . . 10 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
7672, 75elrab2 2885 . . . . . . . . 9 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
7765, 70, 76sylanbrc 414 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ ((𝐹𝑥) +Q 𝑥) <Q 𝑟) → 𝑟 ∈ (2nd𝐿))
7877ex 114 . . . . . . 7 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (((𝐹𝑥) +Q 𝑥) <Q 𝑟𝑟 ∈ (2nd𝐿)))
7964, 78orim12d 776 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (((𝑠 +Q (𝑥 +Q 𝑥)) <Q ((𝐹𝑥) +Q 𝑥) ∨ ((𝐹𝑥) +Q 𝑥) <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
8030, 79mpd 13 . . . . 5 (((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
814, 80rexlimddv 2588 . . . 4 ((((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑟)) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
822, 81rexlimddv 2588 . . 3 (((𝜑 ∧ (𝑠Q𝑟Q)) ∧ 𝑠 <Q 𝑟) → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿)))
8382ex 114 . 2 ((𝜑 ∧ (𝑠Q𝑟Q)) → (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
8483ralrimivva 2548 1 (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982   Or wor 4273  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  cauappcvgprlemcl  7594
  Copyright terms: Public domain W3C validator