| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltletr | GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrltletr | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐵 ≤ 𝐶) | |
| 2 | simpl2 1025 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐵 ∈ ℝ*) | |
| 3 | simpl3 1026 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐶 ∈ ℝ*) | |
| 4 | xrlenlt 8199 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
| 6 | 1, 5 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → ¬ 𝐶 < 𝐵) |
| 7 | simprl 529 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐴 < 𝐵) | |
| 8 | xrltso 9980 | . . . . . 6 ⊢ < Or ℝ* | |
| 9 | sowlin 4408 | . . . . . 6 ⊢ (( < Or ℝ* ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) | |
| 10 | 8, 9 | mpan 424 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
| 11 | 10 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
| 12 | 7, 11 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵)) |
| 13 | 6, 12 | ecased 1383 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐴 < 𝐶) |
| 14 | 13 | ex 115 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 Or wor 4383 ℝ*cxr 8168 < clt 8169 ≤ cle 8170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-po 4384 df-iso 4385 df-xp 4722 df-cnv 4724 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 |
| This theorem is referenced by: xrltletrd 9995 xrre2 10005 xrre3 10006 ge0gtmnf 10007 iooss2 10101 iccssioo 10126 icossico 10127 icossioo 10148 ioossioo 10149 ioc0 10469 |
| Copyright terms: Public domain | W3C validator |