ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submss GIF version

Theorem submss 13178
Description: Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
submss.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
submss (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)

Proof of Theorem submss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 13173 . . . 4 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 submss.b . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2196 . . . . 5 (0g𝑀) = (0g𝑀)
4 eqid 2196 . . . . 5 (+g𝑀) = (+g𝑀)
52, 3, 4issubm 13174 . . . 4 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
61, 5syl 14 . . 3 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
76ibi 176 . 2 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆𝐵 ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
87simp1d 1011 1 (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Mndcmnd 13118  SubMndcsubmnd 13160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-submnd 13162
This theorem is referenced by:  submbas  13183  subm0  13184  subsubm  13185  resmhm  13189  resmhm2  13190  mhmima  13193  gsumsubm  13196  gsumwsubmcl  13198  submmulgcl  13371  submmulg  13372  gsumfzsubmcl  13544
  Copyright terms: Public domain W3C validator