| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > submss | GIF version | ||
| Description: Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| submss.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| submss | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrcl 13103 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
| 2 | submss.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | eqid 2196 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 4 | eqid 2196 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | 2, 3, 4 | issubm 13104 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 7 | 6 | ibi 176 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ 𝐵 ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
| 8 | 7 | simp1d 1011 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Mndcmnd 13057 SubMndcsubmnd 13090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-submnd 13092 |
| This theorem is referenced by: submbas 13113 subm0 13114 subsubm 13115 resmhm 13119 resmhm2 13120 mhmima 13123 gsumsubm 13126 gsumwsubmcl 13128 submmulgcl 13295 submmulg 13296 gsumfzsubmcl 13468 |
| Copyright terms: Public domain | W3C validator |