![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xaddge0 | GIF version |
Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xaddge0 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 7730 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 9 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ ℝ*) |
3 | simplr 502 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*) | |
4 | xaddcl 9530 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
5 | 4 | adantr 272 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
6 | simprr 504 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵) | |
7 | xaddid2 9533 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵) | |
8 | 3, 7 | syl 14 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (0 +𝑒 𝐵) = 𝐵) |
9 | simpll 501 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ*) | |
10 | simprl 503 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴) | |
11 | xleadd1a 9543 | . . . 4 ⊢ (((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 +𝑒 𝐵) ≤ (𝐴 +𝑒 𝐵)) | |
12 | 2, 9, 3, 10, 11 | syl31anc 1200 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (0 +𝑒 𝐵) ≤ (𝐴 +𝑒 𝐵)) |
13 | 8, 12 | eqbrtrrd 3915 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐴 +𝑒 𝐵)) |
14 | 2, 3, 5, 6, 13 | xrletrd 9482 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 (class class class)co 5726 0cc0 7541 ℝ*cxr 7717 ≤ cle 7719 +𝑒 cxad 9444 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-i2m1 7644 ax-0id 7647 ax-rnegex 7648 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-po 4176 df-iso 4177 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-xadd 9447 |
This theorem is referenced by: ge0xaddcl 9653 |
Copyright terms: Public domain | W3C validator |