ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddge0 GIF version

Theorem xaddge0 9944
Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddge0 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵))

Proof of Theorem xaddge0
StepHypRef Expression
1 0xr 8066 . . 3 0 ∈ ℝ*
21a1i 9 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ ℝ*)
3 simplr 528 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*)
4 xaddcl 9926 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
54adantr 276 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
6 simprr 531 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
7 xaddid2 9929 . . . 4 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
83, 7syl 14 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (0 +𝑒 𝐵) = 𝐵)
9 simpll 527 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ*)
10 simprl 529 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐴)
11 xleadd1a 9939 . . . 4 (((0 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 +𝑒 𝐵) ≤ (𝐴 +𝑒 𝐵))
122, 9, 3, 10, 11syl31anc 1252 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (0 +𝑒 𝐵) ≤ (𝐴 +𝑒 𝐵))
138, 12eqbrtrrd 4053 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐴 +𝑒 𝐵))
142, 3, 5, 6, 13xrletrd 9878 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  0cc0 7872  *cxr 8053  cle 8055   +𝑒 cxad 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-xadd 9839
This theorem is referenced by:  ge0xaddcl  10049
  Copyright terms: Public domain W3C validator