ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 GIF version

Theorem isprm5 12508
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm3 12484 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃))
2 breq1 4050 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
32notbid 669 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑥𝑃 ↔ ¬ 𝑧𝑃))
4 simpllr 534 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5 2z 9407 . . . . . . . . . 10 2 ∈ ℤ
65a1i 9 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ∈ ℤ)
7 eluzelz 9664 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
87ad3antrrr 492 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℤ)
9 peano2zm 9417 . . . . . . . . . 10 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
108, 9syl 14 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑃 − 1) ∈ ℤ)
11 prmz 12477 . . . . . . . . . 10 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
1211ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℤ)
136, 10, 123jca 1180 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ))
14 prmuz2 12497 . . . . . . . . . . 11 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
15 eluzle 9667 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
1614, 15syl 14 . . . . . . . . . 10 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
1716ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ≤ 𝑧)
18 eluzelre 9665 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
1914, 18syl 14 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
2019ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℝ)
2120resqcld 10851 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ∈ ℝ)
22 eluzelre 9665 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2322ad3antrrr 492 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℝ)
24 prmnn 12476 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
2524nncnd 9057 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
2625exp1d 10820 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) = 𝑧)
27 1lt2 9213 . . . . . . . . . . . . . 14 1 < 2
28 1nn0 9318 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
2928a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 ∈ ℕ0)
30 2nn0 9319 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3130a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 2 ∈ ℕ0)
32 prmgt1 12498 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 < 𝑧)
33 nn0ltexp2 10861 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ 1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ 1 < 𝑧) → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3419, 29, 31, 32, 33syl31anc 1253 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3527, 34mpbii 148 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) < (𝑧↑2))
3626, 35eqbrtrrd 4071 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 < (𝑧↑2))
3736ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < (𝑧↑2))
38 simpr 110 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ≤ 𝑃)
3920, 21, 23, 37, 38ltletrd 8503 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < 𝑃)
40 zltlem1 9437 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4112, 8, 40syl2anc 411 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4239, 41mpbid 147 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ≤ (𝑃 − 1))
4317, 42jca 306 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1)))
44 elfz2 10144 . . . . . . . 8 (𝑧 ∈ (2...(𝑃 − 1)) ↔ ((2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4513, 43, 44sylanbrc 417 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ (2...(𝑃 − 1)))
463, 4, 45rspcdva 2883 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ¬ 𝑧𝑃)
4746ex 115 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
4847ralrimiva 2580 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
49 simpll 527 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
50 simplr 528 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
51 simpr 110 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑥 ∈ (2...(𝑃 − 1)))
5249, 50, 51isprm5lem 12507 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ¬ 𝑥𝑃)
5352ralrimiva 2580 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5448, 53impbida 596 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃 ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
5554pm5.32i 454 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
561, 55bitri 184 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981  wcel 2177  wral 2485   class class class wbr 4047  cfv 5276  (class class class)co 5951  cr 7931  1c1 7933   < clt 8114  cle 8115  cmin 8250  2c2 9094  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  cexp 10690  cdvds 12142  cprime 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-prm 12474
This theorem is referenced by:  pockthg  12724
  Copyright terms: Public domain W3C validator