ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 GIF version

Theorem isprm5 12145
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm3 12121 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃))
2 breq1 4008 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
32notbid 667 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑥𝑃 ↔ ¬ 𝑧𝑃))
4 simpllr 534 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5 2z 9284 . . . . . . . . . 10 2 ∈ ℤ
65a1i 9 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ∈ ℤ)
7 eluzelz 9540 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
87ad3antrrr 492 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℤ)
9 peano2zm 9294 . . . . . . . . . 10 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
108, 9syl 14 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑃 − 1) ∈ ℤ)
11 prmz 12114 . . . . . . . . . 10 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
1211ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℤ)
136, 10, 123jca 1177 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ))
14 prmuz2 12134 . . . . . . . . . . 11 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
15 eluzle 9543 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
1614, 15syl 14 . . . . . . . . . 10 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
1716ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ≤ 𝑧)
18 eluzelre 9541 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
1914, 18syl 14 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
2019ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℝ)
2120resqcld 10683 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ∈ ℝ)
22 eluzelre 9541 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2322ad3antrrr 492 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℝ)
24 prmnn 12113 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
2524nncnd 8936 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
2625exp1d 10652 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) = 𝑧)
27 1lt2 9091 . . . . . . . . . . . . . 14 1 < 2
28 1nn0 9195 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
2928a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 ∈ ℕ0)
30 2nn0 9196 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3130a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 2 ∈ ℕ0)
32 prmgt1 12135 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 < 𝑧)
33 nn0ltexp2 10692 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ 1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ 1 < 𝑧) → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3419, 29, 31, 32, 33syl31anc 1241 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3527, 34mpbii 148 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) < (𝑧↑2))
3626, 35eqbrtrrd 4029 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 < (𝑧↑2))
3736ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < (𝑧↑2))
38 simpr 110 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ≤ 𝑃)
3920, 21, 23, 37, 38ltletrd 8383 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < 𝑃)
40 zltlem1 9313 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4112, 8, 40syl2anc 411 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4239, 41mpbid 147 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ≤ (𝑃 − 1))
4317, 42jca 306 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1)))
44 elfz2 10018 . . . . . . . 8 (𝑧 ∈ (2...(𝑃 − 1)) ↔ ((2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4513, 43, 44sylanbrc 417 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ (2...(𝑃 − 1)))
463, 4, 45rspcdva 2848 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ¬ 𝑧𝑃)
4746ex 115 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
4847ralrimiva 2550 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
49 simpll 527 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
50 simplr 528 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
51 simpr 110 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑥 ∈ (2...(𝑃 − 1)))
5249, 50, 51isprm5lem 12144 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ¬ 𝑥𝑃)
5352ralrimiva 2550 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5448, 53impbida 596 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃 ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
5554pm5.32i 454 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
561, 55bitri 184 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978  wcel 2148  wral 2455   class class class wbr 4005  cfv 5218  (class class class)co 5878  cr 7813  1c1 7815   < clt 7995  cle 7996  cmin 8131  2c2 8973  0cn0 9179  cz 9256  cuz 9531  ...cfz 10011  cexp 10522  cdvds 11797  cprime 12110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-1o 6420  df-2o 6421  df-er 6538  df-en 6744  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-fl 10273  df-mod 10326  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-dvds 11798  df-prm 12111
This theorem is referenced by:  pockthg  12358
  Copyright terms: Public domain W3C validator