ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 GIF version

Theorem isprm5 12672
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm3 12648 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃))
2 breq1 4086 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
32notbid 671 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑥𝑃 ↔ ¬ 𝑧𝑃))
4 simpllr 534 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5 2z 9482 . . . . . . . . . 10 2 ∈ ℤ
65a1i 9 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ∈ ℤ)
7 eluzelz 9739 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
87ad3antrrr 492 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℤ)
9 peano2zm 9492 . . . . . . . . . 10 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
108, 9syl 14 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑃 − 1) ∈ ℤ)
11 prmz 12641 . . . . . . . . . 10 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
1211ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℤ)
136, 10, 123jca 1201 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ))
14 prmuz2 12661 . . . . . . . . . . 11 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
15 eluzle 9742 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
1614, 15syl 14 . . . . . . . . . 10 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
1716ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ≤ 𝑧)
18 eluzelre 9740 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
1914, 18syl 14 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
2019ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℝ)
2120resqcld 10929 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ∈ ℝ)
22 eluzelre 9740 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2322ad3antrrr 492 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℝ)
24 prmnn 12640 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
2524nncnd 9132 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
2625exp1d 10898 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) = 𝑧)
27 1lt2 9288 . . . . . . . . . . . . . 14 1 < 2
28 1nn0 9393 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
2928a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 ∈ ℕ0)
30 2nn0 9394 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3130a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 2 ∈ ℕ0)
32 prmgt1 12662 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 < 𝑧)
33 nn0ltexp2 10939 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ 1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ 1 < 𝑧) → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3419, 29, 31, 32, 33syl31anc 1274 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3527, 34mpbii 148 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) < (𝑧↑2))
3626, 35eqbrtrrd 4107 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 < (𝑧↑2))
3736ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < (𝑧↑2))
38 simpr 110 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ≤ 𝑃)
3920, 21, 23, 37, 38ltletrd 8578 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < 𝑃)
40 zltlem1 9512 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4112, 8, 40syl2anc 411 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4239, 41mpbid 147 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ≤ (𝑃 − 1))
4317, 42jca 306 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1)))
44 elfz2 10219 . . . . . . . 8 (𝑧 ∈ (2...(𝑃 − 1)) ↔ ((2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4513, 43, 44sylanbrc 417 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ (2...(𝑃 − 1)))
463, 4, 45rspcdva 2912 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ¬ 𝑧𝑃)
4746ex 115 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
4847ralrimiva 2603 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
49 simpll 527 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
50 simplr 528 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
51 simpr 110 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑥 ∈ (2...(𝑃 − 1)))
5249, 50, 51isprm5lem 12671 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ¬ 𝑥𝑃)
5352ralrimiva 2603 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5448, 53impbida 598 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃 ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
5554pm5.32i 454 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
561, 55bitri 184 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002  wcel 2200  wral 2508   class class class wbr 4083  cfv 5318  (class class class)co 6007  cr 8006  1c1 8008   < clt 8189  cle 8190  cmin 8325  2c2 9169  0cn0 9377  cz 9454  cuz 9730  ...cfz 10212  cexp 10768  cdvds 12306  cprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-prm 12638
This theorem is referenced by:  pockthg  12888
  Copyright terms: Public domain W3C validator