ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 GIF version

Theorem isprm5 12630
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm3 12606 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃))
2 breq1 4065 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
32notbid 671 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑥𝑃 ↔ ¬ 𝑧𝑃))
4 simpllr 534 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5 2z 9442 . . . . . . . . . 10 2 ∈ ℤ
65a1i 9 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ∈ ℤ)
7 eluzelz 9699 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
87ad3antrrr 492 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℤ)
9 peano2zm 9452 . . . . . . . . . 10 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
108, 9syl 14 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑃 − 1) ∈ ℤ)
11 prmz 12599 . . . . . . . . . 10 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
1211ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℤ)
136, 10, 123jca 1182 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ))
14 prmuz2 12619 . . . . . . . . . . 11 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
15 eluzle 9702 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
1614, 15syl 14 . . . . . . . . . 10 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
1716ad2antlr 489 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ≤ 𝑧)
18 eluzelre 9700 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
1914, 18syl 14 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
2019ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℝ)
2120resqcld 10888 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ∈ ℝ)
22 eluzelre 9700 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2322ad3antrrr 492 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℝ)
24 prmnn 12598 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
2524nncnd 9092 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
2625exp1d 10857 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) = 𝑧)
27 1lt2 9248 . . . . . . . . . . . . . 14 1 < 2
28 1nn0 9353 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
2928a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 ∈ ℕ0)
30 2nn0 9354 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3130a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 2 ∈ ℕ0)
32 prmgt1 12620 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 < 𝑧)
33 nn0ltexp2 10898 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ 1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ 1 < 𝑧) → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3419, 29, 31, 32, 33syl31anc 1255 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3527, 34mpbii 148 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) < (𝑧↑2))
3626, 35eqbrtrrd 4086 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 < (𝑧↑2))
3736ad2antlr 489 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < (𝑧↑2))
38 simpr 110 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ≤ 𝑃)
3920, 21, 23, 37, 38ltletrd 8538 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < 𝑃)
40 zltlem1 9472 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4112, 8, 40syl2anc 411 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4239, 41mpbid 147 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ≤ (𝑃 − 1))
4317, 42jca 306 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1)))
44 elfz2 10179 . . . . . . . 8 (𝑧 ∈ (2...(𝑃 − 1)) ↔ ((2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4513, 43, 44sylanbrc 417 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ (2...(𝑃 − 1)))
463, 4, 45rspcdva 2892 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ¬ 𝑧𝑃)
4746ex 115 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
4847ralrimiva 2583 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
49 simpll 527 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
50 simplr 528 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
51 simpr 110 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑥 ∈ (2...(𝑃 − 1)))
5249, 50, 51isprm5lem 12629 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ¬ 𝑥𝑃)
5352ralrimiva 2583 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5448, 53impbida 598 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃 ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
5554pm5.32i 454 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
561, 55bitri 184 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 983  wcel 2180  wral 2488   class class class wbr 4062  cfv 5294  (class class class)co 5974  cr 7966  1c1 7968   < clt 8149  cle 8150  cmin 8285  2c2 9129  0cn0 9337  cz 9414  cuz 9690  ...cfz 10172  cexp 10727  cdvds 12264  cprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-prm 12596
This theorem is referenced by:  pockthg  12846
  Copyright terms: Public domain W3C validator