ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5 GIF version

Theorem isprm5 12053
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm3 12029 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃))
2 breq1 3979 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
32notbid 657 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑥𝑃 ↔ ¬ 𝑧𝑃))
4 simpllr 524 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5 2z 9210 . . . . . . . . . 10 2 ∈ ℤ
65a1i 9 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ∈ ℤ)
7 eluzelz 9466 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
87ad3antrrr 484 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℤ)
9 peano2zm 9220 . . . . . . . . . 10 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
108, 9syl 14 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑃 − 1) ∈ ℤ)
11 prmz 12022 . . . . . . . . . 10 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
1211ad2antlr 481 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℤ)
136, 10, 123jca 1166 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ))
14 prmuz2 12042 . . . . . . . . . . 11 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
15 eluzle 9469 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
1614, 15syl 14 . . . . . . . . . 10 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
1716ad2antlr 481 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 2 ≤ 𝑧)
18 eluzelre 9467 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
1914, 18syl 14 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
2019ad2antlr 481 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ ℝ)
2120resqcld 10603 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ∈ ℝ)
22 eluzelre 9467 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2322ad3antrrr 484 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑃 ∈ ℝ)
24 prmnn 12021 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
2524nncnd 8862 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
2625exp1d 10572 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) = 𝑧)
27 1lt2 9017 . . . . . . . . . . . . . 14 1 < 2
28 1nn0 9121 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
2928a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 ∈ ℕ0)
30 2nn0 9122 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3130a1i 9 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 2 ∈ ℕ0)
32 prmgt1 12043 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 1 < 𝑧)
33 nn0ltexp2 10612 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ 1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ 1 < 𝑧) → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3419, 29, 31, 32, 33syl31anc 1230 . . . . . . . . . . . . . 14 (𝑧 ∈ ℙ → (1 < 2 ↔ (𝑧↑1) < (𝑧↑2)))
3527, 34mpbii 147 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (𝑧↑1) < (𝑧↑2))
3626, 35eqbrtrrd 4000 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 𝑧 < (𝑧↑2))
3736ad2antlr 481 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < (𝑧↑2))
38 simpr 109 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧↑2) ≤ 𝑃)
3920, 21, 23, 37, 38ltletrd 8312 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 < 𝑃)
40 zltlem1 9239 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4112, 8, 40syl2anc 409 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
4239, 41mpbid 146 . . . . . . . . 9 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ≤ (𝑃 − 1))
4317, 42jca 304 . . . . . . . 8 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1)))
44 elfz2 9942 . . . . . . . 8 (𝑧 ∈ (2...(𝑃 − 1)) ↔ ((2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
4513, 43, 44sylanbrc 414 . . . . . . 7 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → 𝑧 ∈ (2...(𝑃 − 1)))
463, 4, 45rspcdva 2830 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) ∧ (𝑧↑2) ≤ 𝑃) → ¬ 𝑧𝑃)
4746ex 114 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
4847ralrimiva 2537 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
49 simpll 519 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
50 simplr 520 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
51 simpr 109 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → 𝑥 ∈ (2...(𝑃 − 1)))
5249, 50, 51isprm5lem 12052 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ∧ 𝑥 ∈ (2...(𝑃 − 1))) → ¬ 𝑥𝑃)
5352ralrimiva 2537 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) → ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃)
5448, 53impbida 586 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃 ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
5554pm5.32i 450 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (2...(𝑃 − 1)) ¬ 𝑥𝑃) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
561, 55bitri 183 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 967  wcel 2135  wral 2442   class class class wbr 3976  cfv 5182  (class class class)co 5836  cr 7743  1c1 7745   < clt 7924  cle 7925  cmin 8060  2c2 8899  0cn0 9105  cz 9182  cuz 9457  ...cfz 9935  cexp 10444  cdvds 11713  cprime 12018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-1o 6375  df-2o 6376  df-er 6492  df-en 6698  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-prm 12019
This theorem is referenced by:  pockthg  12266
  Copyright terms: Public domain W3C validator